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Tritium Retention Due to Co-deposition With Carbon
Potentially Limits Duty Cycle of Future Fusion Reactors

• Tritium retention in fusion
devices occurs via carbon
co-deposition

• JET deuterium-tritium campaign
showed strong tritium
accumulation in plasma-
shadowed regions

What is the primary source of
carbon deposited at the inner
divertor?

What are the transport
mechanisms involved?

Tritium-rich carbon

deposits in JET inner

divertor

JET
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Sources of Carbon in DIII-D Are Distributed Between
the Main Chamber and the Divertor Walls

• Relative source contribution
depends on tokamak operation

– Heating power

– Upstream density

– Separation of confined plasma
from main chamber walls

• Divertor dominant source in
low-to-moderate density
regimes

• Main chamber walls are
significant contributor in high-
density regimes

Divertor walls

Main

chamber

walls

DIII-D
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Carbon Deposition in the Divertor Depends on Scrape-
off Layer Transport and Divertor Plasma Conditions

Main SOL

transport

Divertor SOL

transport

DIII-D

• Carbon transport determined by

coupling to hydrogen SOL flows

and drifts

• In the divertor, carbon deposition

occurs predominately along

surfaces exposed to detached  (T

< 3 eV) plasmas
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Toroidally Localized Methane Injection From the Main Wall

and Outer Divertor Produces Deposition at the Inner Divertor

13CH4

JET

13CH4

JT60-U

13C deposition

• Use isotope 13C in hydrated methane as marker on 12C graphite

tiles for surface analysis
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Transport and Deposition of Carbon From the Main Chamber

Walls Were Investigated in DIII-D by Methane Injection

13CH4

13C deposition

• Toroidally symmetric 13CH4 injection

into L-mode and H-mode plasmas

• 13C surface analysis: highest 13C

concentration along surfaces

exposed to cold divertor plasmas

• Carbon transport from the crown to

the inner divertor via frictional

coupling to deuteron flow

• Carbon transport and deposition

simulations

DIII-D
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Transport and Deposition of Carbon From the Main Chamber

Walls Were Investigated in DIII-D by Methane Injection

13CH4

13C deposition

• Toroidally symmetric 13CH4 injection

into L-mode and H-mode plasmas

• 13C surface analysis: highest 13C

concentration along surfaces

exposed to cold divertor plasmas

• Carbon transport from the crown to

the inner divertor via frictional

coupling to deuteron flow

• Carbon transport and deposition

simulations

DIII-D
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Carbon Transport Studies in DIII-D Lower Single Null
Low-density L-mode and High-density H-mode Plasmas
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Inner and Outer Divertor Plasmas Were
Attached in L-mode

Target Langmuir

probes

J.G. Watkins

ISP OSP
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Inner and Outer Divertor Plasmas Were Attached in
L-mode, but Detached in H-mode Between Elms

Target Langmuir

probes

J.G. Watkins

ISP OSP
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Toroidally Symmetric Injection of 13CH4 Had Minimal

Effect on the Core Plasma Conditions

13CH4

CH4

ne,ped

Prad

qOSP

nC6+, ~0.9
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Ex-situ Surface Analysis Measured the Poloidal
and Toroidal 13C Surface Density

• Increase 13C surface concentration
above natural background by
repeating plasma discharges

– L-mode: 22  1.0x1022 13C

– H-mode: 17  2.2x1022 13C

• Representative set of tiles was
removed immediately after venting
DIII-D (29/64)

• Two methods to measure 13C surface
density

– Nuclear reaction analysis 
(SNL: Wampler)

– Proton-induced  emission 
(UWM: Whyte)
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Highest Concentration of 13C Deposition Was
Measured Along the Divertor Surfaces

0

200

300

500

600

NRA detection limit:

2x1016 13C/cm2

• L-mode   • H-mode
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Highest Concentration of 13C Deposition Was
Measured Along the Divertor Surfaces

0

200

300

500

600
• L-mode   • H-mode

toroidally
symmetric
deposition
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Highest Concentration of 13C Deposition Was
Measured Along the Divertor Surfaces

0

200

300

500

600

Ceiling:

~10%

Divertor:
30-40%

Detection limit

• L-mode   • H-mode

• PIGE: ~ 30% deposited at low

concentration along centerpost
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In L-mode, the 13C Deposition is Peaked at the Corner
Formed by Divertor Floor and 45° Angled Divertor Target

W.R. Wampler

• Hypothesis: 13C ions

injected at the crown

enter divertor via inner

main SOL

• Deposition at the inner

plate likely as ions
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In H-mode, Heavy 13C Deposition Was Also
Measured Along the Private Flux Surface

• Hypothesis: 13C ions

injected at the crown

enter divertor via inner

main SOL

• 13C ions recombine in cold

inner divertor plasma,

then deposit as neutrals

between ELMs

• ELMs may lead to re-

erosion of 13C deposits at

the inner strike zone

W.R. Wampler
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During ELMs Ionization Front Moved Toward Targets,

Which May Lead to Redistribution of the 13C Deposits

CIII 

Te ~ 8-10 eV

CI

Peak of 
the ELM

Between
ELMs

CIII CI
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Surface Erosion/Deposition Studies Showed
Deuterium and Carbon Deposition in Tile Gaps

• 13C deposits migrate into
plasma-shadowed regions

Long-range migration of 13C
into spaces behind tiles yet to
be assessed

• Deposition process is
temperature dependent

– Increase of Tsurf from 30 °C to
200 °C reduced deposition by
3-4x*

W. Jacob, K. Krieger, D.L. Rudakov

* D.L. Rudakov Phys. Scr. 2006
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Transport and Deposition of Carbon From the Main Chamber

Walls Were Investigated in DIII-D by Methane Injection

13CH4

13C deposition

• Toroidally symmetric 13CH4 injection

into L-mode and H-mode plasmas

• 13C surface analysis: highest 13C

concentration along surfaces

exposed to cold divertor plasmas

• Carbon transport from the crown to

the inner divertor via frictional

coupling to deuteron flow

• Carbon transport and deposition

simulations

DIII-D
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CH4 Breakup Followed by Imaging of the Emission
From C-H Radical in the Plasma Crown

 
Bx B
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L-mode
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Emission From Low Charge State Carbon Ions
Suggests Carbon Transport Toward Inner Divertor

 
Bx B

CH

CII

CIII

L-mode
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Maximum C+ Ion Velocity Along the Field Line

is 15 km s-1

CII

 
Bx B CH
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Carbon Ions Are Entrained in the Deuteron SOL Flow

of M  ~0.5 Via Frictional Coupling

J.A. Boedo

Upper single null: 
<ne> ~3x1019 m-3 

Reciprocating

probe 

Te ~ 10 eV:
V D+ ~ 15 km s-1

L-mode

In
n

e
r ta

rg
e

t
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Increase in CIII Emission at the Inner Midplane With 13CH4

Injection Indicates Carbon Flow Continues Toward Inner Plate

13CH4 Injection onInjection off

3-4x

CIII

L-mode

Sep.CIII
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In H-mode, Penetration of Methane is
Significantly Shallower

CII

CIII

CH

H-mode
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Imaging of the Carbon Emission From the Crown Did
Not Indicate Carbon Flow Toward Inner Target

CII

CIII

CH

H-mode
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Increase in CIII Emission at the Inner Midplane With 13CH4

Injection, However, Indicates Carbon Flow Toward Inner Plate

13CH4 Injection onInjection off

2x

CIII

H-mode

Sep.CIII
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Transport and Deposition of Carbon From the Main Chamber

Walls Were Investigated in DIII-D by Methane Injection

13CH4

13C deposition

• Toroidally symmetric 13CH4 injection

into L-mode and H-mode plasmas

• 13C surface analysis: highest 13C

concentration along surfaces

exposed to cold divertor plasmas

• Carbon transport from the crown to

the inner divertor via frictional

coupling to deuteron flow

• Carbon transport and deposition

simulations

DIII-D
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13C Transport and Deposition Simulations Were Carried Out

With the Oedge/Hydrocarbon (HC) and UEDGE Codes

• Interpretative OEDGE/

hydrocarbon model

– Prescribed background

plasma from experiment

– Ad-hoc parallel and radial
flows

– Model of CH4 dissociative

breakup and ionization

• ‘Predictive’ UEDGE model

– Background plasma

calculated from first-
principle fluid flow physics,

and assumed radial

transport model

– Intrinsic carbon

– Flows are self-consistently

calculated from ionization

balance and drifts

Boundary plasma

simulations
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13C Transport and Deposition Simulations Were Carried Out

With the Oedge/Hydrocarbon (HC) and UEDGE Codes

• Interpretative OEDGE/

hydrocarbon model

– Prescribed background

plasma from experiment

– Ad-hoc parallel and radial
flows

– Model of CH4 dissociative

breakup and ionization

• ‘Predictive’ UEDGE model

– Background plasma

calculated from first-
principle fluid flow physics,

and assumed radial

transport model

– Intrinsic carbon

– Flows are self-consistently

calculated from ionization

balance and drifts

Boundary plasma

simulations
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Interpretative Modeling With OEDGE/HC Uses Ad-hoc Flow

of Carbon Ions to Match Measured CIII Emission Profiles

• Hydrocarbon physics model and

carbon ion diffusion produce radial

profiles consistent with the

measured CII and CIII emission

• Poloidal shift of CIII emission

achieved by imposing carbon flow

velocity of 10-15 km s-1, consistent

with measurements

13CH4

13CH4

J.D. Elder

A.G McLean

CIII

CIII

M  =0.4

M  =0 L-mode
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Inward SOL Pinch Was Used to Match Measured 13C
Deposition Profile Assuming First Deposition

J.D. Elder

L-mode
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Inward SOL Pinch Was Used to Match Measured 13C
Deposition Profile Assuming First Deposition

J.D. Elder

L-mode

• OEDGE ad-hoc parallel

transport leads to 13C

deposition in far SOL only
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Inward SOL Pinch Was Used to Match Measured 13C
Deposition Profile Assuming First Deposition

J.D. Elder

• OEDGE ad-hoc parallel

transport leads to 13C

deposition in far SOL only

Apply additional radial

pinch (nvr) to move 13C ions

closer to separatrix

L-mode
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Inward SOL Pinch Was Used to Match Measured 13C
Deposition Profile Assuming First Deposition

• OEDGE ad-hoc parallel

transport leads to 13C

deposition in far SOL only

Apply additional radial

pinch (nvr) to move 13C ions

closer to separatrix

• H-mode data may also be

modeled by combination

of parallel and radial

transport (including ELMs)

J.D. Elder

L-mode
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13C Transport and Deposition Simulations Were Carried Out

With the Oedge/Hydrocarbon (HC) and UEDGE Codes

• Interpretative OEDGE/

hydrocarbon model

– Prescribed background

plasma from experiment

– Ad-hoc parallel and radial
flows

– Model of CH4 dissociative

breakup and ionization

• ‘Predictive’ UEDGE model

– Background plasma

calculated from first-
principle fluid flow physics,

and assumed radial

transport model

– Intrinsic carbon

– Flows are self-consistently

calculated from ionization

balance and drifts

Boundary plasma

simulations
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UEDGE Reproduces Multiple Diagnostics in the
Divertor and Main Chamber SOL Simultaneously

• UEDGE predicts Te,ISP ~ 1.5 eV,
consistent with measurements in
inner divertor

– Inner strike point D /D  ~ 0.15

– Lack of CII emission in the inner
leg

L-mode
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UEDGE Reproduces Multiple Diagnostics in the
Divertor and Main Chamber SOL Simultaneously

L-mode
• UEDGE predicts Te,ISP ~ 1.5 eV,

consistent with measurements in
inner divertor

– Inner strike point D /D  ~ 0.15

– Lack of CII emission in the inner
leg

• ExB drifts play an important role
in obtaining low Te,ISP

ExB
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UEDGE Reproduces Multiple Diagnostics in the
Divertor and Main Chamber SOL Simultaneously

L-mode
• UEDGE predicts Te,ISP ~ 1.5 eV,

consistent with measurements in
inner divertor

– Inner strike point D /D  ~ 0.15

– Lack of CII emission in the inner
leg

• ExB drifts play an important role
in obtaining low Te,ISP

– Omitting drifts raises Te,ISP from  1.5
eV to 3 eV

Less consistent with experiment!



41M Groth “Carbon transport and deposition in DIII-D” APS-DPP06, Philadelphia, PA

UEDGE Main Chamber SOL Flow is Strongly
Dependent on Inner Strike Point Temperature

Te,ISP = 3 eV

Te,ISP = 1.5 eV

L-mode
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Direction of Carbon Flow in the Crown Aligned with
the Deuteron Flow

CIII

CIII

13C

13C

Te,ISP = 3 eV

Te,ISP = 1.5 eV

L-mode
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13C Deposition at Inner and Outer Target is Strongly
Dependent on D+ Flow in Main SOL

Inner
plate

Te,ISP = 3 eV

Te,ISP = 1.5 eV

Outer
plate

Outer
plate

Inner
plate

L-mode
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13C Deposition at Inner and Outer Target is Strongly
Dependent on D+ Flow in Main SOL

Inner
plate

Outer
plate

Outer
plate

Inner
plate

L-mode

Main chamber SOL flow and 13C
deposition inconsistent with low Te,ISP

Te,ISP = 3 eV

Te,ISP = 1.5 eV



45M Groth “Carbon transport and deposition in DIII-D” APS-DPP06, Philadelphia, PA

Transport and Deposition of Carbon From the Main Chamber

Walls Were Investigated in DIII-D by Methane Injection

13CH4

13C deposition

• Toroidally symmetric 13CH4 injection into
low-density L-mode and high-density H-
mode plasmas

• Highest 13C concentration along surfaces
exposed to cold divertor plasmas (T < 3 eV)

– Inner divertor plate in L-mode and H-mode

– Private flux tiles in H-mode

• Carbon transport from the crown to the inner
divertor via frictional coupling to deuteron
flow

– Deuteron flow measurements in USN
plasmas

– Carbon flow from poloidally shifted
emission profiles in the crown

DIII-D
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Predicting Tritium Retention in Future Fusion Devices With
Carbon Walls Requires Further Analysis and Improved Modeling

• 50-70% of the injected 13C atoms were found along

plasma-facing surfaces

Accessible to surface cleanup techniques in future fusion reactor

• Long-range migration into tile gaps, and beyond, may have

occurred

Currently being assessed by surface analysis of the tile gaps

• Improvements to predictive capability of carbon sources and

deposition in tokamaks are in progress

Simultaneous simulations of multiple diagnostics measurements,
including SOL flow and carbon deposition


