Carbon Scrape-Off Layer Transport and Deposition in DIII-D

By M. Groth*

S.L. Allen,* M.E. Fenstermacher,* C.J. Lasnier,* G.D. Porter,* M.E. Rensink,* T.D. Rognlien,* J.A. Boedo,[†] D.L. Rudakov,[†] N.H. Brooks,[‡] R.J. Groebner,[‡] A.W. Leonard,[‡] W.P. West.[‡] J.D. Elder,^Δ S. Lisgo,^Δ A.G. McLean,^Δ P.C. Stangeby,^Δ W.R. Wampler,[§] J.G. Watkins,[§] D.G. Whyte,[#]

*Lawrence Livermore National Laboratory, Livermore, CA [†]University of California San Diego, La Jolla, CA [‡]General Atomics, San Diego, CA ^ΔUniversity of Toronto (UTIAS), Toronto, Ontario, Canada [§]Sandia National Laboratory, Albuquerque, NM, USA [#]Massachusetts Institute of Technology, Cambridge, MA

Presented at the 48th Annual Meeting of the Division of Plasma Physics Philadelphia, Pennsylvania

October 30 through November 3, 2006

Tritium Retention Due to Co-deposition With Carbon Potentially Limits Duty Cycle of Future Fusion Reactors

JET

- Tritium retention in fusion devices occurs via carbon co-deposition
- JET deuterium-tritium campaign showed strong tritium accumulation in plasmashadowed regions
- ⇒ What is the primary source of carbon deposited at the inner divertor?

2

⇒ What are the transport mechanisms involved?

Sources of Carbon in DIII-D Are Distributed Between the Main Chamber and the Divertor Walls

- Relative source contribution
 depends on tokamak operation
 - Heating power
 - Upstream density
 - Separation of confined plasma from main chamber walls
- Divertor dominant source in low-to-moderate density regimes
- Main chamber walls are significant contributor in highdensity regimes

Carbon Deposition in the Divertor Depends on Scrapeoff Layer Transport and Divertor Plasma Conditions

- Carbon transport determined by coupling to hydrogen SOL flows and drifts
- In the divertor, carbon deposition occurs predominately along surfaces exposed to detached (T < 3 eV) plasmas

Toroidally Localized Methane Injection From the Main Wall and Outer Divertor Produces Deposition at the Inner Divertor

 Use isotope ¹³C in hydrated methane as marker on ¹²C graphite tiles for surface analysis

Transport and Deposition of Carbon From the Main Chamber Walls Were Investigated in DIII-D by Methane Injection

- Toroidally symmetric ¹³CH₄ injection into L-mode and H-mode plasmas
- ¹³C surface analysis: highest ¹³C concentration along surfaces exposed to cold divertor plasmas
- Carbon transport from the crown to the inner divertor via frictional coupling to deuteron flow
- Carbon transport and deposition simulations

6

Transport and Deposition of Carbon From the Main Chamber Walls Were Investigated in DIII-D by Methane Injection

- Toroidally symmetric ¹³CH₄ injection into L-mode and H-mode plasmas
- ¹³C surface analysis: highest ¹³C concentration along surfaces exposed to cold divertor plasmas
- Carbon transport from the crown to the inner divertor via frictional coupling to deuteron flow
- Carbon transport and deposition simulations

7

Carbon Transport Studies in DIII-D Lower Single Null Low-density L-mode and High-density H-mode Plasmas

Plasma	L-mode	ELMy
Param.		H-mode
Campaign	2003	2005
<n<sub>e> [m-3]</n<sub>	3x10 ¹⁹	8x10 ¹⁹
P _{NBI} [MW]	0.2	6.6
T _{e,ISP} [eV]	< 2	< 2
	cold	detached
T _{e,OSP} [eV]	25	< 2
	attached	detached
		ELMing
		@ 200 Hz

Inner and Outer Divertor Plasmas Were Attached in L-mode

M Groth "Carbon transport and deposition in DIII-D" APS-DPP06, Philadelphia, PA

Inner and Outer Divertor Plasmas Were Attached in L-mode, but Detached in H-mode Between Elms

Toroidally Symmetric Injection of ¹³CH₄ Had Minimal Effect on the Core Plasma Conditions

11

Ex-situ Surface Analysis Measured the Poloidal and Toroidal ¹³C Surface Density

- Increase ¹³C surface concentration above natural background by repeating plasma discharges
 - L-mode: 22 ⇔ 1.0x10²² ¹³C
 - H-mode: $17 \Leftrightarrow 2.2 \times 10^{22} \, {}^{13}\text{C}$
- Representative set of tiles was removed immediately after venting DIII-D (29/64)
- Two methods to measure ¹³C surface density

12

- Nuclear reaction analysis (SNL: Wampler)
- Proton-induced γ emission (UWM: Whyte)

Highest Concentration of ¹³C Deposition Was Measured Along the Divertor Surfaces

Highest Concentration of ¹³C Deposition Was Measured Along the Divertor Surfaces

Highest Concentration of ¹³C Deposition Was Measured Along the Divertor Surfaces

In L-mode, the ¹³C Deposition is Peaked at the Corner Formed by Divertor Floor and 45° Angled Divertor Target

- Hypothesis: ¹³C ions injected at the crown enter divertor via inner main SOL
- Deposition at the inner plate likely as ions

In H-mode, Heavy ¹³C Deposition Was Also Measured Along the Private Flux Surface

- Hypothesis: ¹³C ions injected at the crown enter divertor via inner main SOL
- ¹³C ions recombine in cold inner divertor plasma, then deposit as neutrals between ELMs
- ELMs may lead to reerosion of ¹³C deposits at the inner strike zone

During ELMs Ionization Front Moved Toward Targets, Which May Lead to Redistribution of the ¹³C Deposits

Surface Erosion/Deposition Studies Showed Deuterium and Carbon Deposition in Tile Gaps

- ¹³C deposits migrate into plasma-shadowed regions
- ⇒ Long-range migration of ¹³C into spaces behind tiles yet to be assessed
- Deposition process is temperature dependent
 - Increase of T_{surf} from 30 °C to 200 °C reduced deposition by 3-4x*

* D.L. Rudakov Phys. Scr. 2006

W. Jacob, K. Krieger, D.L. Rudakov

Transport and Deposition of Carbon From the Main Chamber Walls Were Investigated in DIII-D by Methane Injection

- Toroidally symmetric ¹³CH₄ injection into L-mode and H-mode plasmas
- ¹³C surface analysis: highest ¹³C concentration along surfaces exposed to cold divertor plasmas
- Carbon transport from the crown to the inner divertor via frictional coupling to deuteron flow
- Carbon transport and deposition simulations

20

CH₄ Breakup Followed by Imaging of the Emission From C-H Radical in the Plasma Crown

Emission From Low Charge State Carbon Ions Suggests Carbon Transport Toward Inner Divertor

Maximum C⁺ Ion Velocity Along the Field Line is 15 km s⁻¹

Carbon lons Are Entrained in the Deuteron SOL Flow of M₁₁ ~0.5 Via Frictional Coupling

Increase in CIII Emission at the Inner Midplane With ¹³CH₄ Injection Indicates Carbon Flow Continues Toward Inner Plate

In H-mode, Penetration of Methane is Significantly Shallower

Imaging of the Carbon Emission From the Crown Did Not Indicate Carbon Flow Toward Inner Target

M Groth "Carbon transport and deposition in DIII-D" APS-DPP06, Philadelphia, PA

Increase in CIII Emission at the Inner Midplane With ¹³CH₄ Injection, However, Indicates Carbon Flow Toward Inner Plate

Transport and Deposition of Carbon From the Main Chamber Walls Were Investigated in DIII-D by Methane Injection

- Toroidally symmetric ¹³CH₄ injection into L-mode and H-mode plasmas
- ¹³C surface analysis: highest ¹³C concentration along surfaces exposed to cold divertor plasmas
- Carbon transport from the crown to the inner divertor via frictional coupling to deuteron flow
- Carbon transport and deposition simulations

29

¹³C Transport and Deposition Simulations Were Carried Out With the Oedge/Hydrocarbon (HC) and UEDGE Codes

- Interpretative OEDGE/ hydrocarbon model
 - Prescribed background plasma from experiment
 - Ad-hoc parallel and radial flows
 - Model of CH₄ dissociative breakup and ionization

'Predictive' UEDGE model

- Background plasma calculated from firstprinciple fluid flow physics, and assumed radial transport model
- Intrinsic carbon
- Flows are self-consistently calculated from ionization balance and drifts

¹³C Transport and Deposition Simulations Were Carried Out With the Oedge/Hydrocarbon (HC) and UEDGE Codes

- Interpretative OEDGE/ hydrocarbon model
 - Prescribed background plasma from experiment
 - Ad-hoc parallel and radial flows
 - Model of CH₄ dissociative breakup and ionization

'Predictive' UEDGE model

- Background plasma calculated from firstprinciple fluid flow physics, and assumed radial transport model
- Intrinsic carbon
- Flows are self-consistently calculated from ionization balance and drifts

Interpretative Modeling With OEDGE/HC Uses Ad-hoc Flow of Carbon lons to Match Measured CIII Emission Profiles

- Hydrocarbon physics model and carbon ion diffusion produce radial profiles consistent with the measured CII and CIII emission
- Poloidal shift of CIII emission achieved by imposing carbon flow velocity of 10-15 km s⁻¹, consistent with measurements

L-mode

 OEDGE ad-hoc parallel transport leads to ¹³C deposition in far SOL only

J.D. Elder

L-mode

- OEDGE ad-hoc parallel transport leads to ¹³C deposition in far SOL only
- ⇒ Apply additional radial pinch (nv_r) to move ¹³C ions closer to separatrix

J.D. Elder

L-mode

- OEDGE ad-hoc parallel transport leads to ¹³C deposition in far SOL only
- ⇒ Apply additional radial pinch (nv_r) to move ¹³C ions closer to separatrix
- H-mode data may also be modeled by combination of parallel and radial transport (including ELMs)

J.D. Elder

¹³C Transport and Deposition Simulations Were Carried Out With the Oedge/Hydrocarbon (HC) and UEDGE Codes

- Interpretative OEDGE/ hydrocarbon model
 - Prescribed background plasma from experiment
 - Ad-hoc parallel and radial flows
 - Model of CH₄ dissociative breakup and ionization

'Predictive' UEDGE model

- Background plasma calculated from firstprinciple fluid flow physics, and assumed radial transport model
- Intrinsic carbon
- Flows are self-consistently calculated from ionization balance and drifts

UEDGE Reproduces Multiple Diagnostics in the Divertor and Main Chamber SOL Simultaneously

- UEDGE predicts T_{e,ISP} ~ 1.5 eV, consistent with measurements in inner divertor
 - Inner strike point $D_{\beta}/D_{\alpha} \sim 0.15$
 - Lack of CII emission in the inner leg

UEDGE Reproduces Multiple Diagnostics in the Divertor and Main Chamber SOL Simultaneously

- UEDGE predicts T_{e,ISP} ~ 1.5 eV, consistent with measurements in inner divertor
 - Inner strike point $D_{\beta}/D_{\alpha} \sim 0.15$
 - Lack of CII emission in the inner leg
- ExB drifts play an important role in obtaining low T_{e,ISP}

UEDGE Reproduces Multiple Diagnostics in the Divertor and Main Chamber SOL Simultaneously

- UEDGE predicts T_{e,ISP} ~ 1.5 eV, consistent with measurements in inner divertor
 - Inner strike point $D_{\beta}/D_{\alpha} \sim 0.15$
 - Lack of CII emission in the inner leg
- ExB drifts play an important role in obtaining low T_{e,ISP}
 - Omitting drifts raises $\rm T_{e,ISP}$ from 1.5 eV to 3 eV
- \Rightarrow Less consistent with experiment!

UEDGE Main Chamber SOL Flow is Strongly Dependent on Inner Strike Point Temperature

Direction of Carbon Flow in the Crown Aligned with the Deuteron Flow

¹³C Deposition at Inner and Outer Target is Strongly Dependent on D⁺ Flow in Main SOL

¹³C Deposition at Inner and Outer Target is Strongly Dependent on D⁺ Flow in Main SOL

Transport and Deposition of Carbon From the Main Chamber Walls Were Investigated in DIII-D by Methane Injection

- Toroidally symmetric ¹³CH₄ injection into low-density L-mode and high-density Hmode plasmas
- Highest ¹³C concentration along surfaces exposed to cold divertor plasmas (T < 3 eV)
 - Inner divertor plate in L-mode and H-mode
 - Private flux tiles in H-mode
- Carbon transport from the crown to the inner divertor via frictional coupling to deuteron flow
 - Deuteron flow measurements in USN plasmas
 - Carbon flow from poloidally shifted emission profiles in the crown

Predicting Tritium Retention in Future Fusion Devices With Carbon Walls Requires Further Analysis and Improved Modeling

 50-70% of the injected ¹³C atoms were found along plasma-facing surfaces

⇒ Accessible to surface cleanup techniques in future fusion reactor

Long-range migration into tile gaps, and beyond, may have occurred

 \Rightarrow Currently being assessed by surface analysis of the tile gaps

- Improvements to predictive capability of carbon sources and deposition in tokamaks are in progress
 - ⇒ Simultaneous simulations of multiple diagnostics measurements, including SOL flow and carbon deposition

