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Feedback control of the qmin evolution has been used to 
form the target q profile for high βN DIII-D AT discharges

• q profile target for high βN
phase:
– 1.5 < qmin < 2.5
– q(0) – qmin ≈ 0.5

• H-mode during the Ip ramp
• Changes in conductivity 

(σ, or effectively Te) used to 
modify the time evolution 
of the inductive current 
profile
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Simulations of the current profile evolution during AT 
discharge formation are used to test the physics models

• Transport codes reproduce changes in current profile 
evolution achieved by varying conductivity (σ)
– J = Jind+JNI = σE + JBS + JEC + JNB

• Inductive current dominates during discharge 
formation

• Models of Bp diffusion, JBS and JNB reproduce 
experiment in many cases

• Transport codes in use to develop and test feedback 
controllers



Transport code is used with measured density and 
temperature profiles to predict the q profile evolution

• ONETWO used primarily, also CRONOS, TRANSP, 
CORSICA

• Starts with an initial current profile obtained by fitting 
magnetic and MSE data with EFIT

• Total plasma current versus time is specified
• Experimental values for comparison with simulations 

are obtained from EFIT equilibrium reconstructions 
using MSE data
– J and q profiles
– Electric field from E = dψ/dt
– JIND = σE (σ from neoclassical model)
– JNI = J - JIND



q evolution predictions reproduce the dependence on Te 
and the choice of L or H-mode observed in the experiment

• q profile evolves more 
slowly as Te is increased
– result of increase in σ

• Decay of q is slower in 
H-mode for comparable 
mid-radius Te
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The noninductive current remains relatively low and shows 
little change in profile shape as the q profile evolves

• INI/Itotal<0.5: inductive current evolution dominates 
– But JNI is large enough to change q profile, particularly 

as Te increases
• Predicted profile of JNI nearly constant in time

– No practical means to change the profile to change q
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The simulation can reproduce the measured time evolution 
of the q profile in L-mode discharges with low fNI

• This example is the lowest Te case where fNI = INI/Itotal
is the smallest.

• The two simulations bracket the experimental results
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Electric field at the core and boundary show reasonable 
agreement between simulation and experiment

• Rising E in core reflects relaxation of JIND profile
• Predicted E (ρ= 1) above the measured value could 

indicate either the modeled INI or the modeled σ is 
too low
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For many H-mode discharges, faster q profile evolution than 
observed is predicted by the transport code models

•Predicted inductive current 
profile shape roughly matches 
experiment

•Predicted JIND is too large

•Predicted JNI peaks closer to 
the axis than measured

•Predicted INI is smaller than 
measured
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Postulating that the neutral beam-driven current is located 
off-axis results in a better match to the experiment

• Total NB-driven current is the same in both simulations
• Redistribution of fast ions by Alfvén eigenmodes could 

possibly result in an altered JNB profile
– See VanZeeland BI1.4 and Heidbrink UP1.14 (IAEA EX6-3) 
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The CRONOS code successfully models the capability of the 
real time controller to modify the time evolution of qmin

• PNB = estimate + gain * (actual qmin – target qmin)
• Time evolution of ne, Ti, Zeff specified
• Te profile calculated using an empirical electron 

heat diffusivity model
• Postulated JNB profile is used
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Transport code simulations can be used to test closed loop 
feedback control of the current profile evolution

• Code predictions match the experiment when the 
noninductive current fraction is small

• Differences in the JNI profile between the models and 
experiment remain to be resolved
– Code predicts faster q evolution than observed
– Possibly Alfvén eigenmodes changing JNB profile

• CRONOS can reproduce the closed loop control of the q 
evolution that has been implemented in DIII-D experiments

• Future plans include model-based current profile control
– See GP1.7 by Y. Ou, C. Xu, E. Schuster et al., Lehigh University
– Simplified model of poloidal flux evolution for controller 

design
– Extremum seeking algorithm to predict the actuator 

waveforms that will take ψ profile from the initial state to a 
specified final state
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