Modeling of DIII-D Discharges With Feedback Control of the Safety Factor Profile Evolution

by J.R. Ferron

for V. Basiuk,* T.A. Casper,[†] Q. Gao,[‡] P. Gohil, C.M. Greenfield, F. Imbeaux,* T.C. Luce, M. Murakami,[¶] Y. Ou,[§] C.C. Petty, P.A. Politzer, E. Schuster, M.R. Wade, and A. Wang

*Cadarache Euratom Association, Cadarache, France. [†]Lawrence Livermore National Laboratory, Livermore, California. [‡]SWIPP, Chengdu, China. [¶]Oak Ridge National Laboratory, Oak Ridge, Tennessee. [§]Lehigh University, Bethlehem, Pennsylvania.

Presented at the 48th Annual Meeting of the Division of Plasma Physics Philadelphia, Pennsylvania

October 30 through November 3, 2006

Feedback control of the q_{min} evolution has been used to form the target q profile for high β_N DIII-D AT discharges

- q profile target for high β_N phase:
 - $-1.5 < q_{min} < 2.5$
 - $q(0) q_{min} \approx 0.5$
- H-mode during the I_p ramp
- Changes in conductivity

 (σ, or effectively T_e) used to
 modify the time evolution
 of the inductive current
 profile

Simulations of the current profile evolution during AT discharge formation are used to test the physics models

 Transport codes reproduce changes in current profile evolution achieved by varying conductivity (σ)

- $J = J_{ind} + J_{NI} = \sigma E + J_{BS} + J_{EC} + J_{NB}$

- Inductive current dominates during discharge formation
- Models of B_p diffusion, J_{BS} and J_{NB} reproduce experiment in many cases
- Transport codes in use to develop and test feedback controllers

Transport code is used with measured density and temperature profiles to predict the q profile evolution

- ONETWO used primarily, also CRONOS, TRANSP, CORSICA
- Starts with an initial current profile obtained by fitting magnetic and MSE data with EFIT
- Total plasma current versus time is specified
- Experimental values for comparison with simulations are obtained from EFIT equilibrium reconstructions using MSE data
 - J and q profiles
 - Electric field from E = $d\psi/dt$
 - $J_{IND} = \sigma E$ (σ from neoclassical model)

-
$$J_{NI} = J - J_{IND}$$

q evolution predictions reproduce the dependence on Te and the choice of L or H-mode observed in the experiment

- q profile evolves more
 slowly as T_e is increased
 result of increase in σ
- Decay of q is slower in
 H-mode for comparable
 mid-radius T_e

The noninductive current remains relatively low and shows little change in profile shape as the q profile evolves

- I_{NI}/I_{total}<0.5: inductive current evolution dominates
 - But J_{NI} is large enough to change q profile, particularly as $T_{\rm e}$ increases
- Predicted profile of J_{NI} nearly constant in time
 - No practical means to change the profile to change q

The simulation can reproduce the measured time evolution of the q profile in L-mode discharges with low $f_{\rm NI}$

- This example is the lowest T_e case where $f_{NI} = I_{NI}/I_{total}$ is the smallest.
- The two simulations bracket the experimental results

Electric field at the core and boundary show reasonable agreement between simulation and experiment

- Rising E in core reflects relaxation of J_{IND} profile
- Predicted E (ρ = 1) above the measured value could indicate either the modeled I_{NI} or the modeled σ is too low

For many H-mode discharges, faster q profile evolution than observed is predicted by the transport code models

Postulating that the neutral beam-driven current is located off-axis results in a better match to the experiment

- Total NB-driven current is the same in both simulations
- Redistribution of fast ions by Alfvén eigenmodes could possibly result in an altered J_{NB} profile
 - See VanZeeland BI1.4 and Heidbrink UP1.14 (IAEA EX6-3)

The CRONOS code successfully models the capability of the real time controller to modify the time evolution of ${\bf q}_{\rm min}$

- P_{NB} = estimate + gain * (actual q_{min} target q_{min})
- Time evolution of n_e , T_i , Z_{eff} specified
- T_e profile calculated using an empirical electron heat diffusivity model
- Postulated J_{NB} profile is used

Transport code simulations can be used to test closed loop feedback control of the current profile evolution

- Code predictions match the experiment when the noninductive current fraction is small
- Differences in the J_{NI} profile between the models and experiment remain to be resolved
 - Code predicts faster q evolution than observed
 - Possibly Alfvén eigenmodes changing J_{NB} profile
- CRONOS can reproduce the closed loop control of the q evolution that has been implemented in DIII-D experiments
- Future plans include model-based current profile control
 - See GP1.7 by Y. Ou, C. Xu, E. Schuster et al., Lehigh University
 - Simplified model of poloidal flux evolution for controller design
 - Extremum seeking algorithm to predict the actuator waveforms that will take ψ profile from the initial state to a specified final state

