Cross Comparison on DIII-D of Experimental Techniques for Measuring n_e and T_e in Detached Divertor Plasmas,* N.H. Brooks, A.W. Leonard, GA, S. Lisgo, E. Oks, D. Volodko, Auburn U.—Spectroscopy of high-n, Balmer line transitions provides a means of measuring n_e and T_e in recombining plasmas [1]. The relative intensities of Rydberg series lines near the ionization limit are a sensitive diagnostic of T_e for $T_e < 1$ eV. Stark broadening of these same lines provides a measure of local n_e and with less accuracy of T_e. Predictions from Balmer line spectroscopy are compared with those from divertor Thomson scattering to evaluate the accuracy of different theoretical models of line broadening [2,3]. In particular, the detailed dependence of line width on principal quantum number is used to distinguish which line-broadening model best accords with experiment.

*Work supported by US DOE under DE-FC02-04ER54698.