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3D Non-Axisymmetric Effects are Becoming
Increasingly Important in Tokamaks

• 3D perturbations can arise from several sources:
– Unintended error fields
– Imposed external non-axisymmetric coils (intended error fields)
– Nonlinearly saturated instabilities

• Plasma response is a key ingredient in determining the
consequences in each case:
⇒ Plasma can amplify or suppress or otherwise modify perturbation !

• Key problem is to find this response:
– Find the self consistent plasma response
– Determine the consequences of the perturbation and it’s response

# Displacement jumps, singular currents, and islands at interior rational
surfaces

# Rotation drag from resonant or non resonant perturbed fields
– Mitigate the consequences as needed:

# Counter boundary perturbations
# Correction coils or trim coils



Tokamaks With Non-Axisymmetric Perturbations Can Be
Treated As Either 2D Stability Or 3D Equilibrium Problems

• Perturbed Equilibrium and Stability Problems Are Closely Related:
In general equilibria can be considered as stationary points of the energy

functional with the plasma having a fixed specified shape
– Perturbed equilibria are then stationary points of δWp with the surface held

fixed with a prescribed normal displacement ξ•n or normal magnetic field
δB•n superimposed on the unperturbed plasma surface

– Can use tools developed for Tokamak stability and 3D stellarator equilibria

• Use both points of view and tools to answer following questions:
– What is the linear response to a given boundary perturbation

– Conversely give certain specified features of linear response, what
boundary perturbations can be used to control them

– What is the nonlinear response to a given boundary perturbation:
Problem reduces to identifying accessible states and constraints relating initial
unperturbed and final nonlinear accessible states

– What is the relation between the linear and nonlinear responses



Issues Naturally Fall In Two Distinct Approaches
Characterized By 2D Stability And 3D Equilibrium

• Dynamical stability formulation:

• Equilibrium formulation:

• Hilbert Space Formulation
• Nuhrenberg-Boozer et al. (Phys

Plasmas 10 2840 (2003))
• Normal Mode Approach (NMA))

(Chu, et al, Nucl. Fusion 43, 441
(2003))

• Almost Ideal MHD (AIMHD): Jensen
(Phys. Plasmas 8, 5158 (2001).

• Greens Function Formulation
• Response Matrix Formulation



Focus Separately on Two Distinct Formulations:
Linear and Nonlinear Aspects

• Linear perturbative dynamical system approach:
– Compute self-consistent linear response to external boundary perturbations

– Construct relation between features of linear response and imposed perturbation:

⇒ Inverse relation obtained by SVD yields set of specific boundary perturbations
of 2D equilibrium that control individual (desired) features

– Apply to resonant response (Nuhrenberg-Boozer):

⇒ Set of specific boundary perturbations that control individual displacement jumps

⇒ Island widths associated with displacement jumps and boundary perturbations
⇒ Optimized shape perturbations to remove critical islands induced by error fields

– Apply to nonresonant response: Control nonresonant and resonant features

• 3D saturated state equilibrium approach:
– Use instabilities computed for the base 2D equilibrium as a boundary condition to

V3FIT to generate a 3-D equilibrium:
⇒Perturb the base 2D equilibrium using linear nonaxisymmetric eigenmodes

from GATO as finite boundary perturbations
⇒Compute a self-consistent ‘force balancing’ nonlinear response needed to

reproduce a new 3D equilibrium having this boundary



Hilbert Space Approach: Linear Ideal Plasma Response
From Projecting Eigenmodes on Plasma Boundary

• Relate plasma response to boundary perturbations through
eigenmodes (following Nuhrenberg and Boozer (2003) and Chu, et al (2003)):

– Expand plasma response as a set of complete eigenmodes
– Project this complete set of the full eigenmodes on to the boundary as a

set of boundary displacements

• These plasma boundary perturbations form a complete set of
admissible boundary perturbations under certain conditions:
– A boundary perturbation can be expanded as a linear combination of a

subset of these perturbations
With important provisos !

• This yields the complete plasma response as the same linear
combination of the corresponding full plasma eigenmodes

The complete plasma response to any boundary perturbation can
be obtained in this way

• What defines the initial complete set of eigenmodes?



Under Some Conditions Eigenvectors of Hermitian Operators Form
Complete Bases For Hilbert Space of Square Integrable Functions

• Admissible MHD perturbations: Hilbert space of square integrable
functions

• The ideal MHD operator L is Hermitian:
– Eigenvalues are real, bounded from below, and countably infinite
– Eigenvectors are orthogonal
– If L were bounded and compact  then eigenvectors form a

complete set
• Ideal MHD operator is a convenient choice since:

– The eigenvectors are orthogonal in the natural energy norm
– Eigenvectors of L represent natural motions so might be expected

to minimize the number of terms needed to represent any
reasonably interesting perturbation

• But L is a non compact (unbounded) operator:
– Completeness of the eigenvectors is non-trivial !
– Non square-integrable solutions (continuum modes) exist

These issues need to be resolved before we can use eigenvectors of L



MHD Operator Does Satisfy Conditions for Eigenvectors to Form
Complete Bases For Hilbert Space of Admissible Functions

• The continuum modes must be removed:
– Admissible sequences of functions converging to these solutions

outside Hilbert space are still approximate solutions
– Use the reduced operator K obtained by using only normal

displacements X = ξ•∇ψ to avoid continuum completely
• The operators L and K are bounded from below and have a compact

inverse:
– Compact ⇒ bounded sets map to compact sets (I.e. convergent

sequences stay inside the set so remain square integrable)
– Inverse of L and K is a Greens Function which is compact
⇒Eigenvectors of L or K  do form a complete set to represent any

admissible MHD displacement normal to flux surfaces
• Eigenvectors of K are similar to those of L and have the same

convenient properties:
– The eigenvectors are orthogonal in the modified energy norm
– Eigenvectors of K are physical motions



Hilbert Space Approach Utilizes Ideal MHD Codes
to Construct Full Plasma Response

• Tabulate complete set of linear perturbation eigenfunctions:
– Determine all linear eigenmodes using ideal MHD stability code: ξi: i = 1,N

– Extract normal component Xi = ξi•∇ψ
⇒ Complete orthonormal basis: Xi(ψ,χ,φ)

• Project out the boundary displacements:
Xi(χ,φ)  = P Xi(ψ,χ,φ)  = Xi(ψs,χ,φ):

P is a projection operator from the full Hilbert space to the
Hilbert space of boundary displacements X(χ,φ)

– The Xi(χ,φ) form a basis for all admissible X(χ,φ):

⇒ X(χ,φ) = Σ gi Xi(χ,φ)

• For any prescribed boundary displacement compute coefficients gi:
– If the Xi are a complete set this is possible in principle

The complete plasma response to the boundary displacement
  X(χ,φ) = Σ gi Xi(χ,φ)

is then: X(ψ,χ,φ) = Σ gi Xi(ψ,χ,φ)



Important Reservations Also Apply to The Projection
Assumptions Since Projections Are Not Invertible

• It is possible in principle to expand any boundary perturbation in the
Xi only if the Xi are a complete set

• The boundary projection operator P is not one-to-one:
– Projection operator P: F(Ωp)→ F( Γb)   has a non-vanishing nullspace in

F(Ωp) of internal modes with no corresponding boundary perturbations:

– Projections of two functions (not in the nullspace) may be degenerate

⇒The ‘dimension’ of the Hilbert space of boundary perturbations is
smaller than the dimension of the original Hilbert space

⇒Something is lost in going back to the original Hilbert space:
the degeneracies cannot be inverted

Completeness of the Xi is not guaranteed !
• Note: the  information lost due to degeneracy of the Xk with respect

to the Xk may be recovered in some cases if the tangential
components of the displacement ξ are projected:
– But not for internal modes: These are truly degenerate



The Projection Operator P Does Offer Possibility of
Finding A Complete Basis For Boundary Perturbations

• Note that he operator P projects the function space F(Ωp):
– Not to be confused with projection P of the actual plasma domain Ωp on

to the surface Γb

• The projection P can be considered to transform F(Ωp) to F(Ωp):
– Define an extension of the X ∈ F( Γb) to all of F(Ωp) as:

(X(χ,φ),Y(χ,φ)) ≡ (X(ψ,χ,φ),Y(ψ,χ,φ))
with  X(ψ,χ,φ) ≡ X(ψs,χ,φ) and Y(ψ,χ,φ) ≡ Y(ψs,χ,φ)

– Then the energy norm inner product on F(Ωp) is still meaningful on F( Γb)  
when extended in this way

– The space spanned by the Xk is a subset of the full Hilbert space

• The projection P is a bounded Hermitian operator on F(Ωp):

– All eigenvalues of P are either zero or 1 and hence real

– Eigenvectors of P could be used as a basis for the space in principle

– But: the eigenvalues of P are degenerate (all unity or zero)

⇒The P eigenvectors of P span a 2D space that needs to be
orthogonalized using Gram-Schmidt



A Subset of Projected Eigenmodes Can Provide A Basis
for the Boundary Perturbations of Most Interest

• The Xi from projection of eigenvectors of K are not necessarily
orthogonal in the energy norm in the sense of P(Xk) extended to the
full Hilbert space:
– In principle one can define an inner product with weight function w st:

 (Xi , Xk ) = ∫ Γ X*i Xk w dS = δi
k

• A subspace of the Hilbert space spanned by a linearly independent
subset is itself a Hilbert space:
⇒ A subset of projected eigenmodes of K can form a basis by taking only

those Xk that are nondegenerate  (ie. P(Xi) ≠  P(Xk)):
i.e. The subspace spanned by the full eigenvectors Xk which yield linearly

independent projections can be taken to generate the Xk

⇒ Boundary perturbations can be expanded as a unique linear
combination of these independent perturbations

For linearly independent the Xk and X = ∑ak Xk then:
P(X) = ∑ak P(Xk) = ∑ak Xk and if also: P(X) = ∑bk Xk then bk = ak

• The Xk are then a complete basis for F( Γb) in the following sense:
– If ∃ X: (X,Xk ) = 0 ∀ k it cannot correspond to a distinct plasma motion
– Otherwise if it did correspond to a plasma motion then ∃ X ∈ F( Γb) st:

P(X) = X ∈ F( Γb)



Boundary Projection Basis Set is Complete in F(Γb) But Does
Not Guarantee Full Reconstruction of Plasma Response

• Boundary perturbations that are excluded are either:
– Null (I.e. not normal to the boundary) or :
– Degenerate having same projection as some other plasma eigenmode

• Internal modes (the nullspace of P) must be ignored:
– Not a major restriction in practice since purely internal modes are rare:
– Even the m/n = 1/1 internal kink mode has a finite boundary perturbation

if the boundary condition has a wall at infinity
– Note also that if an internal eigenfunction X0 = ξ0•∇ψ from the nullspace of

P is added to the reconstructed plasma response X → X + X0 then by self-
adjointness of the ideal MHD operator the Rayleigh Quotient:

 δW(ξ†+ξ0
†,ξ+ξ0) / δK(ξ†+ξ0

†,ξ+ξ0)
is changed only to second order in |X0|/|X|
– But it can contribute to features of the response such as resonant jumps

• Degenerate modes can be approximated by least square (SVD) fit
with the available basis: X(χ,φ) = Σ gi Xi(χ,φ) 
– In practice the Hilbert space is truncated to finite dimension N:
⇒ Least square fit for a specified boundary function to truncated basis is

appropriate in this case as well



Given Complete Plasma Response One Can Isolate
And Study Specific Features of the Response

• Hilbert space approach allows one to relate specific features of the
plasma response to individual boundary displacement basis Xi(χ,φ):
– Enumerate and quantify some specific feature: For example:

# Displacement jumps at resonant surfaces
# Any feature of the resonant or nonresonant response that can be

enumerated and have a quantified value
– Tabulate feature from plasma response against the Xi(χ,φ)
–  SVD analysis to isolate sensitivity of specific feature to each Xi(χ,φ)

• Inverse problem of defining specific boundary displacement
needed to control specific features can be solved by inverting SVD
coefficient matrix:
– SVD analysis determines inverse sensitivity
– Inverse yields boundary perturbations X for a prescribed set of

characteristics
– These are given as linear combinations of the Xi(χ,φ)

• However those features associated with internal modes cannot be
identified from this analysis:
Restriction results from nonvanishing nullspace of projection operator P!



Nuhrenberg-Boozer Approach Specifically Isolates
Sensitivity of Resonant Surfaces to the xi

• An arbitrary boundary perturbation X(χ,φ)  can induce jumps in the normal
displacement X(ψ,θ,φ) at rational surfaces:
– Enumerate j = 1,M rational surfaces and quantify displacement jumps [X]i  for each

basis function i = 1,N
– Assume M < N (number of basis modes taken in boundary expansion)
– Relate jumps [ξ]i to the eigenfunctions Xi and so to the Xi :    ⇒ [X]i = A Xi
– This defines an M×N matrix A whose N columns are the jump values [X]

([X]1 , [X]2 ,… [X]N) = A (X1, X2, … XN ) = A I = A

For any arbitrary prescribed boundary displacement X = Σ(giXi) the jump is:

[X] = Σ(gi A Xi) = Σ(gi [X]i)

• Perform SVD analysis on A:  A = U D Vt

D is a diagonal matrix with: M nonzero eigenvalues and
N-M zero eigenvalues

U and V are orthogonal:  U Ut  = V Vt  = 1
– Invert A: A-1 =  V D-1 Ut    (1/Dii set to zero if Dii ~ 0)

– Then X = A-1[X]  defines the boundary perturbation required to set any
prescribed set of displacement jumps [X]



The Matrix A Embodies the Sensitivity of the
Resonant Response to External Perturbations

• This splits out the resonant from the nonresonant response:
– Range of A is the subspace of those jumps [X]i that can be reached by some Xi:

ie, the jumps that can be induced by some boundary displacement:

# Dimension of this subspace is the rank of A which is the number of nonzero (or
significant) Dii

# This is spanned by the columns of U corresponding to these same Dii

– The nullspace of A is the subspace of the Xi that is mapped to zero jump

# These only produce nonresonant responses

# This is spanned by the columns of V corresponding to zero (or insignificant) Dii

•  We focus here on resonant response:
– From SVD decomposition we know which boundary perturbations can affect:

i.e. augment or heal jumps (islands in a real plasma) at any rational surface

⇒ We can control internal resonant response by controlling 3D shape perturbations

• Eigenvalues of SVD matrix D determine response to boundary perturbations:
– Large eigenvalue ⇒ large jump induced by corresponding basis boundary

    perturbation
– Small eigenvalue ⇒ corresponding basis boundary perturbation has

     insignificant effect on jump



Nuhrenberg-Boozer Application in 2D: Need To Distinguish
Two Different Views - Base 2D or Perturbed 3D System

• 2D Base system:
– Expand in 2D eigenmodes
– Find complete linear response and determine sensitivity of unperturbed

2D boundary to small 3D perturbations as described
• Finite but small 3D perturbation of a 2D system:

– Given a pre-existing error field or tearing mode:
 ⇒ Can expand in either 2D eigenmodes or full 3D eigenmodes

– These are equivalent however - just different but ‘equivalent’ bases for
the Hilbert space: ⇒Expansion in 2D eigenmodes is simpler !

– Find complete linear response to small 3D perturbations as described
– This system may have pre-existing jumps from finite 3D perturbation
⇒ Determine which additional 3D perturbations can affect these jumps

• Displacement jumps in ideal theory correspond to islands at
respective surfaces in a real system:
– 2D Base system:

Nuhrenberg-Boozer approach determines boundary perturbations with
largest sensitivity to island formation for an axisymmetric equilibrium

– Finite but small 3D perturbation of a 2D system:
Controlling the jumps effectively controls the size of islands



The SVD Matrix A is Also the Key to Controlling
Islands Through Controlled External Perturbations

• An equilibrium with nested surfaces is most sensitive near surfaces
that are resonant with the unperturbed equilibrium to external
perturbations:
– The surfaces easily split ⇒ island opens up
– Jumps in X = ξ•∇ψ at rational surfaces imply either singular currents

(ideal MHD) or islands
⇒ Islands can be controlled by controlling these jumps

• Islands are especially sensitive to the boundary perturbations X with
nonzero eigenvalues:
– These are the perturbations that need to be carefully controlled

by external coils
⇒ The theory can be used to make the jump vanish at any given surface

by a suitable choice of the boundary displacement
• Theory can yield information on actual island size due to error fields:

– Island width can be related directly to size of the jump in the ideal theory
– We have the specific combinations of boundary perturbations (specific

sum of the Xi) that relate the individual jumps X = A-1[X]
⇒ Island size is directly proportional to this perturbation



Nuhrenberg-Boozer Application Can Control Islands
Induced by Error Fields With External Trim Coils

• The boundary perturbations controlling specific islands can also be
related to the δB from coil currents needed to make that perturbation
by extracting the equilibrium response part:
– Find the non-axisymmetric trim fields needed to control those

jumps
• We can then optimize 3D plasma shape using trim (correction) coils:

– Find trim coils to provide the desired external perturbations
– Relate island amplitudes to trim coil currents
– Find trim coil currents needed to eliminate particular islands
⇒Trim coil currents needed to eliminate any given jump:
⇒Control islands from error fields using the DIII-D internal control

coils

This theory is basically the same theory as the general  formulation

developed by Chu and Chance for RWM feedback



Non Resonant Boundary Perturbations Can Also Be Used
As Rotation or Tearing Mode Control Tool

• Experiments in ASDEX suggest nonresonant field perturbations may
suppress islands (Yu, et al., Nucl. Fusion 40, 2031, (2000)):
– Experiments in DIII-D intended to demonstrate this were inconclusive since

the nonresonant fields applied with the C-coil strongly reduced plasma
rotation (La Haye, et al, Phys. Plasmas (2002))

• DIII-D experiments did not take account of the plasma response in
applying the nonresonant field - just a nonresonant vacuum field:
– Imposed field may not necessarily be the vacuum field

• Non resonant perturbations can be controlled if plasma response is
included:
– Form the complete set of eigenmodes Xi and boundary projections Xi to

obtain the full plasma response
• Enumerate and quantify nonresonant response:

– For each basis function Xi enumerate j = 1,M < N:
# Fourier components of eigenmodes and quantify the amplitudes {F}i at

some specified surface (e.g. q = 2) for each basis function i = 1,N > M  or
# Rational surfaces and quantify the amplitudes {F}i for some specified

nonresonant harmonic (e.g. m = 2)



Hilbert Space Approach Can Equally Be Applied to
Control Non Resonant Components of Response

• Identify boundary perturbations responsible for controlling specific
components:
– Relate amplitudes {F}i to the boundary functions Xi: ⇒ {F}i = BXi

– The N columns of B are the amplitudes {F}i

For any X = Σ(giXi) the amplitudes of the Fourier components at

this surface are then:

 {F} = Σ(gi B Xi) = Σ(gi){F}i

• Perform SVD analysis on B:  B = S E Tt

E is a diagonal matrix with M nonzero eigenvalues and N-M zero
eigenvalues
S and T are orthogonal and B-1 =  T E-1 St    (1/Eii set to zero if Eii ~ 0)

– Then X = B-1 {F} defines the boundary perturbation required to set
any prescribed set of nonresonant Fourier amplitudes {F}



• GATO solves for eigenmodes using a standard Finite Hybrid Element
Galerkin expansion in both radial and poloidal directions:
– Expansion in Hybrid (nonconforming) elements and minimizing δW with

respect to adjoint node values yields:

– The vector X contains the node values, A represents the potential energy
and B represents the kinetic energy or other appropriate norm

– System is solved for X from which the eigenvector can be reconstructed

• Thus each eigenvector is an expansion of Finite Elements:
– The eigenvectors of L or K (not the finite element basis) form the basis for

the linear plasma response expansion set

• Several modifications are required before this can be used:
– Continuum removal and conversion to true δW code

– Expansion of Finite element basis set to permit displacement jump
discontinuities

GATO Ideal MHD Stability Code Can be Used
To Build Table of Eigenmodes of L
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Major Modification Required for GATO Involves
Conversion to True δW Code

• The ideal MHD operator L has two continuous spectra resulting from
unboundedness of the resolvent  (L-λI)-1 for λ covering certain ranges
– An Alfven wave continuum
– A sound wave continuum

Continuum modes  need to be removed from the spectrum for several
practical reasons

• Continuum modes with λ > 0 lie outside admissible space:
– GATO finds the approximate continuum solutions numerically
– These are the admissible sequences of functions converging to the

solutions outside Hilbert space as mesh is refined
• Continuum modes in principle are internal modes so would be in the

nullspace of the boundary projection P
• Eigenmodes of near zero frequency resonate with a static imposed

perturbation and must be excluded:
– External zero frequency perturbations can resonate with near-zero

frequency approximate continuum modes unless excluded from the
eigenfunction basis expansion

– The approximate continuum solutions are only approximately in the
nullspace of P



Conversion of GATO to δW Code Requires Prior
Continuum Restabilization and Removal

• Standard procedure for eliminating continua is by utilizing alternative
norm to provide the continuum modes with zero inertia:
– Minimizing the Rayleigh quotient λ = δW/ξ with a norm ξ involving

the full displacement ξ yields large displacements near δW = 0
• Replace kinetic energy normalization in L by a more suitable norm:

– Use K: i.e. a δK norm utilizing only the X = ξ•∇ψ component of
displacement

– Norm with ξ•n or δB•n specified at a boundary point
– Norm with surface average of ξ•n or δB•n (“boundary inertia”)
– Note that problem remains Hermitian, bounded from below and has a

compact (Greens Function) inverse:
⇒ Eigenvectors of reduced problem are still a complete set

• But:  Continuum in GATO is numerically destabilized:
• Continuum modes need to be restabilized before applying δW norm:

– Sound continuum is easily eliminated by insisting on incompressibility
– δW norm to eliminate Alfven continuum produces spectral pollution:
⇒ Sequence of spurious unstable modes increasing in number with mesh
– Manifestation of providing zero inertia to numerically destabilized modes



Continuum Removal is Being Done in Several Steps
Following Degtyarev, et al.

• Subtraction of numerical destabilization term from δW:
– Subtract numerical term

– Force density profile to vanish at the magnetic axis:
⇒ Eliminate spurious modes

– Replace kinetic energy norm by:

• Local Shear term can be evaluated in straight field line coordinates:
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Modifications Also Require Extended Linear
Displacement Basis Set

• Ideal MHD operator L or K has two linearly independent solutions with
different asymptotic behaviour at rational surface singularities:
– Small Frobenius solution is the physical (Hilbert space) solution
– Large Frobenius solution is non-integrable but
– Existence of large solution permits jumps in small solution displacement

• Displacements with jump discontinuities at rational surfaces need to
be represented by the Finite element basis:
– GATO and other ideal MHD codes solve for small solution
– Still admissible as having finite energy norm
– Finite Hybrid Elements already allow piecewise constant elements
– Corresponding infinite displacement derivatives need to be excluded in

usual nonconforming element manner

• GATO uses Finite Hybrid Elements discontinuous at element
boundaries in addition to continuous  piecewise linear elements:
– Key is to ensure infinite derivatives do not contribute to energy
– This is already handled by hybrid method: Continuous elements used for

derivatives equal discontinuous elements only on average



Finite Hybrid Element Method Utilizes Discontinuous
Elements for X Tied to Continuous Elements for ∂X/∂ψ

• Finite Hybrid Element method requires all element
functions entering δW to be of same polynomial order:
– Displacements X(1)(ψ,χ) constructed across two elements centered

on single nodes
– Displacement derivatives ∂X(2)/∂ψ(ψ,χ) utilize tent elements across

two elements centered on each node
⇒Construction enables exact equality of key relations such as ∇.ξ=0 

everywhere

• Resonant part of ∂X(2)/∂ψ(ψ,χ) always appears with factor
(m-nq)  which vanishes on resonant surface:
⇒Contributions from rational surfaces should automatically vanish in

the limit as the mesh is refined
– It may be necessary however to actively suppress the resonant

part of ∂X(2)/∂ψ(ψ,χ) in practice



Discontinuous Elements for X Constrained In Natural
Way to The Continuous Elements for ∂X/∂ψ

• Element functions for X(1)(ψ,χ) and ∂X(2)/∂ψ(ψ,χ) constructed to
have    ∫ X(1)(ψ,χ)dψdχ  ≡ ∫ X(2)(ψ,χ)dψdχ
over each cell:
⇒  X(1)(ψ∗,χ∗) ≡ ∫ X(2)(ψ∗,χ∗) at the half node points ψ=ψ∗ and χ=χ∗

Can reconstruct solution from either continuous or discontinuous elements !



3D Equilibrium Approach Can Study Nonlinear
Response

• Assume plasma is perturbed by a fixed specified
displacement:
– Previous approach will describe linear plasma response:

⇒ This response is still in equilibrium to first order

⇒ Will it evolve dynamically to a new nearby state due to
unbalanced forces second order in the linear displacement?

• In quasilinear regime the displacement modifies base
equilibrium to become a 3D system with finite
perturbation:
– This will continue to evolve dynamically:

Nonlinearly unstable ⇒  no final state

Nonlinearly stable ⇒ final saturated stationary 3D 
    equilibrium state

• Recompute this new state as a 3D equilibrium



Constraints Imposed In Equilibrium Construction Not Clearly
Related To Those Imposed During Actual Dynamic Evolution

• New 3D Equilibrium Evolves Under Certain Constraints: (AIMHD)

• Fixed (or a subset of points on) boundary specified :
⇒ Assumes plasma response does not change boundary
⇒ Equivalently the boundary is forced

• Specific assumptions made concerning topology:

– VMEC equilibria assume nested flux surfaces

– PIES or HINST equilibria do not assume nested surfaces but:
# Assumptions made in PIES about profiles within islands (see below)
# Assumptions made in HINST about dynamics of evolution (inertia etc.)

• Specific assumptions made concerning profile constraints:
– Generally p = p(ψ,region), where region is a simply connected region

isolated from other regions by a separatrix:

⇒ If new regions open up assumptions need to be imposed on
p(ψ,region) for those regions

– Current density in 3D non-nested codes is set by an arbitrary flux
dependent integration constant



These Questions Are Essentially Those Posed by The
Theory of Almost Ideal MHD (AIMHD)

• Obvious links between this and the theory of AIMHD:

– What are the constraints actually being imposed in the 3D
equilibrium calculation?

– What relation do they bear to the actual physical constraints
imposed by the physical system during the dynamics of
equilibrating to a new 3D saturated state?

• For now we take the approach that:

– The boundary is treated as a forced boundary:

⇒ i.e. constrained by either external fields or that of a
linear ideal MHD eigenmode

– The topology remains nested

– The profiles remain fixed as functions of normalized poloidal flux:

⇒ i.e. p = p(ψ) is fixed

But other assumptions could be made instead!



Formulation for Linear and Nonlinear Plasma Response
to External Perturbations Has Applications To Tokamaks
• Hilbert space formulation (and variants) provides linear response:

• Two key formal theoretical problems resolved satisfactorily:
• Completeness of eigenvectors of L
• Non invertibility of the boundary projection operator P

• Two key practical problems resolved satisfactorily:
• Continuum removal is necessary and can be implemented
• Extension of basis to include displacement jumps

Applied to resonant response ⇒Control of islands
Applied to nonresonant response ⇒Possible control of tearing modes

• Equilibrium formulation (and variants) provides nonlinear response:
– Example of Almost Ideal MHD formulation
– Specific assumptions of constraints justifiable in principle but alternative

assumptions are possible
• Linear and nonlinear response formulations intimately related:

– Greens Function and Response Matrix formulations are essentially
inverse problem to Hilbert space differential operator formulation

– Equilibrium and stability are related:  Perturbed equilibria are stationary
points of δWp with the surface prescribed by a normal displacement


