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Cross-machine comparison establishes universality of
resistive wall mode stabilization by plasma rotation

• Resistive wall mode (RWM)
stabilization by plasma rotation
has been studied up to high N

– NSTX: N   7.3

– DIII-D: N   4.3

– JET: N   3.7

• Recent DIII-D experiments
demonstrate sustained N ~ 4
with active error field correction

A.M. Garofalo invited talk, UI2,
Friday 9:30AM

• The devices vary in size and
aspect ratio A=R/a



Plasma rotation can stabilize RWM up to the
ideal wall stability limit

• Resistive Wall Mode (RWM):

– External kink mode whose growth is slowed
by magnetic field penetration through the

conducting wall

– Quasi-static perturbation in a fast toroidal
plasma flow:  RWM ,  RWM  ~ W

-1 << rot

• Stabilizing effect of plasma rotation first
observed in DIII-D [E.J. Strait et al,  PRL 74 (1995)]

– Stabilization requires a dissipation
mechanism [A. Bondeson, D.J. Ward, PRL 72 (1994)]

• Resonant field amplification (RFA):

– Externally applied resonant fields can
excite the weakly damped RWM
[A.H. Boozer, PRL 86 (2001)]



Machine-size comparison between DIII-D and JET and
aspect ratio comparison between DIII-D and NSTX

• Machine size comparison: DIII-D and JET vary by a factor of 1.7

– Same resonant field amplification (RFA)

– Same critical plasma rotation for RWM stabilization

• Importance of q=2 surface for rotational stabilization

• Aspect ratio comparison: DIII-D and NSTX vary by a factor of 2

– Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

– Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity

• Target plasmas designed for a large difference between no wall and
ideal wall  limits rather than maximum N



• Obtain the same external kink mode by matching the ideal MHD
properties of the plasma:   shape, q-profile, pressure profile

• Express RWM drive by the normalized gain in 

0 at no wall limit

1 at ideal wall limit

• Stabilization models:

– Sound wave damping: Fluid approximation, where RWM couples to
sound waves, which are then ion Landau damped, described via a
parallel viscous force

– Kinetic description of inertia enhancement and ion Landau damping

Normalize plasma rotation frequency with inverse of Alfvén time

Match parameters for the RWM drive and for the
dissipation mechanism

    
A = R0

µ0nemi

B0

    
C = no wall

ideal wall no wall
              = {



Matching shape and profiles leads to same ideal MHD
no-wall stability limit in DIII-D and JET plasmas

• ELMy H-mode target plasma

– q0 1.5

– q95 = 3.3 - 5.0

– li  0.7 (DIII-D) / 0.95 (JET)

• Ideal MHD no-wall stability limit:      – N,no wall ~2.8 li     in DIII-D and JET



Wall-stabilized regime in DIII-D and JET varies
due to different l i and wall geometry

• No wall stability limit

DIII-D: N,no wall  2.0

JET: N,no wall  2.7

• Ideal wall stability limit

DIII-D: N,ideal wall  1.5 N,no wall

JET: N,ideal wall  1.3 N,no wall



Wall-stabilized regime in DIII-D and JET varies
due to different l i and wall geometry

• No wall stability limit

DIII-D: N,no wall  2.0

JET: N,no wall  2.7

• Ideal wall stability limit

DIII-D: N,ideal wall  1.5 N,no wall

JET: N,ideal wall  1.3 N,no wall

• Effective conformal wall:                 dc 0.45a  (DIII-D)           dc  0.55a (JET)



DIII-D and NSTX develop common target with a
substantial wall-stabilized regime

• Profiles are not well matched
due to aspect ratio effects

• No wall stability limit

DIII-D: N,no wall  2.0

NSTX: N,no wall  4.0-4.8

• Ideal wall stability limit

DIII-D: N,ideal wall  1.5 N,no wall

NSTX: N,ideal wall  1.3 -1.5
 N, no wall
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Machine-size comparison between DIII-D and JET and
aspect ratio comparison between DIII-D and NSTX

• Machine size comparison: DIII-D and JET vary by a factor of 1.7

– Same resonant field amplification (RFA)

– Same critical plasma rotation for RWM stabilization

• Importance of q=2 surface for rotational stabilization

• Aspect ratio comparison: DIII-D and NSTX vary by a factor of 2

– Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

– Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity



DIII-D and JET plasmas probed using non-axisymmetric
external control coils with similar geometry

• Apply resonant field pulses Bext with one pair
of external control coils (predominantly n=1)

• Detect plasma response Bplas with toroidal
arrays of Br sensors



High-  plasmas respond to externally applied n=1

perturbations

• Beta exceeds no-
wall limit

• Plasma rotation
provides RWM

stabilization

• Probe plasma
with externally
applied n=1 field

• RFA leads to
plasma response
detected at the

(toroidal) node of
the applied field



RFA in DIII-D and JET increase significantly once 

exceeds no wall stability limit

• Increase of RFA for
 > no-wall consistent with

previous observations in
DIII-D and NSTX [A.C. Sontag

et al, Phys. Plasmas (2005)]

– Low  response in JET

differs from DIII-D

• Measured amplification in
DIII-D twice as large as in
JET



– Assume effective poloidal mode
number m=2 at outboard midplane

Comparison of RFA measurements has to account for
geometry of magnetic fields and sensor locations

• Similar geometry of applied
fields in DIII-D and JET

• Similar geometry of plasma
perturbation in DIII-D and JET

• Radial decay of external field
and plasma response cause
radial dependence of Bplas/Bext

– Cylindrical approximation

    

Ba
plas Ba

ext

Bs
plas Bs

ext
= rs a( )

2m

1.610.74rs (m)
0.950.54a (m)

8.253.5(rs/a)4

JETDIII-D



RFA magnitudes at the plasma boundary in
DIII-D and JET are in quantitative agreement

• Map RFA to the same location,
e.g. plasma boundary

• RWM drive described by
normalized gain over no wall
limit C



RFA magnitudes at the plasma boundary in
DIII-D and JET are in quantitative agreement

• Map RFA to the same location,
e.g. plasma boundary

• RWM drive described by
normalized gain over no wall
limit C

• Link quantitative agreement of
RFA to RWM damping rate - RWM

    

Bs
plas (node)

Bs
ext

  RWM W

RWM W( )
2

+ RWM W( )
2

RWM in DIII-D and JET equally
damped by plasma rotation

Weaker RWM damping with increasing 
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• Machine size comparison: DIII-D and JET vary by a factor of 1.7

– Same resonant field amplification (RFA)

– Same critical plasma rotation for RWM stabilization

• Importance of q=2 surface for rotational stabilization

• Aspect ratio comparison: DIII-D and NSTX vary by a factor of 2

– Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

– Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity



Braking of plasma rotation needed for RWM onset

• NBI torque in NSTX, DIII-D and JET is usually provides sufficient rotation for
RWM stabilization

• Increase drag by applying non-axisymmetric fields

– Neoclassical toroidal viscosity (NTV)

[Shaing, Phys. Plasmas 10, 1443 (2003)] :

• Non-linear RWM onset

– Magnetic braking:

– RWM dispersion relation:

– Evolution of perturbed field (RFA and RWM):

    
TNTV B B( )

2

  
W

d
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B RWM B
 

 
 

 

 
 = Bext

  RWM W = f rot( )

    

d
dt rot B2



Magnetic braking leads to non-linear RWM onset

• Apply n=1 field

• Plasma rotation decreases

• Onset of fast growth is

preceded by increasing RFA

• Critical rotation crit measured

at onset of fast growth



Time of marginal stability determined from start of
fast mode growth



Critical rotation in the center of DIII-D and JET
plasmas decreases with increasing q95

• q95-dependence consistent
with MARS-F predictions

Y.Q. Liu, next talk



Evaluating crit at q=2 removes q95-dependence and

leads to quantitative agreement between DIII-D and JET

• q95-dependence caused by
q-surfaces moving inwards
towards higher rotation

– Stabilization mechanism

depends on local q, e.g.
kinetic damping [A. Bondeson

and M.S. Chu, Phys. Plasmas (1996)],

• Quantitative agreement in DIII-D
and JET indicates prominent role
of q=2 surface

– Consistent with predictions for
sound wave damping
[D. Gregoratto, et al, Plasma Phys.

Control. Fusion (2001)]

• Variations of JET data partially
caused by -dependence

    crit 1 q2



crit has weak -dependence

• Beta-dependence of crit can

account for some of the
scatter of the measurement

• Consistent with increase of
RFA with 
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– Sound wave damping



crit has weak -dependence

• Beta-dependence of crit can

account for some of the
scatter of the measurement

• Consistent with increase of
RFA with 

• Value of crit consistent with

predictions (using MARS-F) for

– Sound wave damping

– Kinetic damping



Machine-size comparison between DIII-D and JET and
aspect ratio comparison between DIII-D and NSTX

• Machine size comparison: DIII-D and JET vary by a factor of 1.7

– Same resonant field amplification (RFA)

– Same critical plasma rotation for RWM stabilization

• Importance of q=2 surface for rotational stabilization

• Aspect ratio comparison: DIII-D and NSTX vary by a factor of 2

– Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

– Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity



• q95-dependence in NSTX similar to
DIII-D and JET

• Evaluate crit at the same value of q

• NSTX critical rotation crit A at same

q always equal or higher

– Rotation for q  3 close to zero

– Single resonant surface can be
sufficient for RWM stabilization

Critical rotation in NSTX exceeds critical rotation in DIII-D



• Ion Landau damping
significantly reduced for
trapped particles

– Assume that only passing
particles contribute to RWM
stabilization

• Observed doubling of crit A

consistent with stabilization by
passing particles only

– Effect included in the kinetic

but not in the sound wave
damping model

Aspect ratio dependence suggests that trapped
particles do not contribute to RWM stabilization

    
crit A

1

1



• Coupling to sound waves
depends on sound time

• Alfvén time and sound
time linked via 

– Link is broken by aspect
ratio

• Normalization on sound
time removes aspect ratio
dependence

Alternatively - RWM damping could be
determined by sound wave velocity

    
S = R0

mi

kBTe + kBTi

    

A

S

1 2

N q95( )
1 2



• q95-dependence of crit A explained by re-location of q-surfaces

– RWM stabilization depends on the local q

• Quantitative agreement of crit A evaluated at q=2 in DIII-D and JET

– Physics determined by ideal MHD drive and normalized rotation

– q=2 surface plays prominent role in stabilization mechanism

• Quantitative agreement of RFA in DIII-D and JET

– Increase of RFA above no wall in qualitative agreement with NSTX

– RFA is manifestation of a weakly damped RWM

• Aspect ratio dependence of crit A in DIII-D and NSTX explained by

trapped particles not contributing to RWM stabilization

– Alternatively, the stabilization is determined by the sound wave
velocity rather than the Alfvén wave velocity

Comparison of NSTX, DIII-D and JET establishes
universality of RWM stabilization by plasma rotation


