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Cross-machine comparison establishes universality of

resistive wall mode stabilization by plasma rotation

- Resistive wall mode (RWM) JET

stabilization by plasma rotation
has been studied up to high g,
— NSTX: B =73
— DIII-D: B £4.3
— JET: By £3.7
 Recent DIlI-D experiments
demonstrate sustained g~ 4
with active error field correction

= A.M. Garofalo invited talk, Ul2,
Friday 9:30AM

* The devices vary in size and
aspect ratio A=R/a
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Plasma rotation can stabilize RWM up to the

ideal wall stability limit

» Resistive Wall Mode (RWM): 40— MARS-F |
— External kink mode whose growth is slowed - RWM growth rate !
by magnetic field penetration through the 30k : !

conducting walll S linternal
. . . : : | '

— Quasi-stafic perturbation in a fast toroidal = 20} ideal | | mode
plasma flow: Yeyu, Orum ~ Tw! << Loy = | ol |
= 10k I :

[ | ]

ere_s . . 5 l €2.41T7=0.015 |

« Stabilizing effect of plasma rotation first ! rot*A ,0 05
observed in DIII-D [E.J. Strait et al, PRL 74 (1995)] 0 | = - !

e : o : I
— Stabilization requires a dissipation A D :
mechanism [A. Bondeson, D.J. Ward, PRL 72 (1994)] 10?Mode Iroiat‘ioﬁ fr'eciue.enr‘;y ‘...'. :
= | .0. |
PE I ". -" :
* Resonant field amplification (RFA): : SF s
— Externally applied resonant fields can : , |
OF T S —

excite the weakly damped RWM —
[A.H. Boozer, PRL 86 (2001)] Bro wall — Pideal wall
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Machine-size comparison between DIII-D and JET and

aspect ratio comparison between DIII-D and NSTX

 Machine size comparison: DIlI-D and JET vary by a factor of 1.7
— Same resonant field amplification (RFA)
— Same crifical plasma rotation for RWM stabilization
* Importance of g=2 surface for rotational stabilization

o Aspect ratio comparison: DIlII-D and NSTX vary by a factor of 2

— Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

— Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity

* Target plasmas designed for a large difference between no wall and
ideal wall g limits rather than maximum g,
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Match parameters for the RWM drive and for the

dissipation mechanism

e Obtain the same external kink mode by matching the ideal MHD
properties of the plasma: shape, g-profile, pressure profile

* Express RWM drive by the normalized gain in §

C[S — p- Bno wall —
Bideal wall = Pro wall

{ 0 at no wall limit
1 at ideal wall limit

o Stabilization modeils:

— Sound wave damping: Fluid approximation, where RWM couples to
sound waves, which are then ion Landau damped, described via a
parallel viscous force

— Kinetic description of inertia enhancement and ion Landau damping
-»Normalize plasma rotation frequency with inverse of Alfvén time

VUoeM;

T4 =Ry B
0
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Matching shape and profiles leads to same ideal MHD
no-wall stability limit in DIII-D and JET plasmas

00 02 04 06 08 1.0 00 02 04 06 08 1.0

P P
 ELMy H-mode target plasma
- gqy=1.5
— o5 =3.3-5.0

— ¢=0.7 (DII-D) /0.95 (JET)
* Ideal MHD no-wall stability limit: - By .o wan~2.8 § in DIlI-D and JET
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Walll-stabilized regime in DIlI-D and JET varies

due to different ¢, and wall geometry

Dill-D 121611 @1=1.050s JET 62645 @ t=46.500s

* No wall stability limit
DII-D: By no wan = 2.0
JET:  Bunowal =2.7

- Ideal wall stability limit £ o] 0|
DIII-D: By igeal wal = 19 Bunowal |
JET:  Buideawal = 13 Bunowal | Al

al l
X7

||||||||||||||||||||||||||||||||||||||||||||||||
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Walll-stabilized regime in DIlI-D and JET varies

due to different ¢, and wall geometry

DIll-D 121611 @1=1.050s

* No wall stability limit
DIIFD: By o wan = 2.0
JET: ﬁN,no wall = 2.7

. Ideal wall stability limit = 0
DIlI-D: ﬁN,ideoI wall ~ 1.5 BN,no wall
JET:  Blideat wal = 1-3 Brino wail

» Effective conformal wall: d.=0.45a (DlIII-D) d.=0.55a (JET)
Npm!!m!n:‘;unm ,-; EFDA EUROPEAN FUSION DEVELOPMENT \(_;RillaElla_Nr




DIlI-D and NSTX develop common target with a

substantial wall-stabilized regime

¢ Profiles are not well maiched Dill-D 122047 @ t=1.500s NSTX 117288 @ t=0.547s
° Fl-
due to aspect ratio effects

f s
- No wall stability limit "I |
DII-D: By g ey = 2.0 | i \ |
NSTX: By o wa = 4-0-4.8 | ; =

* ldeal wall stability limit

DI-D: B igeat wal = 1-9 B no wail
NSTX: ﬁN,ideoI wall ~1.3-1.5

ﬁN, no wall -1 - - h /
|

R(m)
pII-D NSTX

Z(m)




DIlI-D and NSTX develop common target with a

substantial wall-stabilized regime

¢ Profiles are not well maiched Dill-D 122047 @ t=1.500s NSTX 117288 @ t=0.547s
° Fl-
due to aspect ratio effects

* No wall stability limit
DII-D: By no wan = 2.0
NSTX: Buno wan = 4.0-4.8

* ldeal wall stability limit

DI-D: B igeat wal = 1-9 B no wail
NSTX: ﬁN,ideoI wall ~1.3-1.5

ﬁN, no wall AL

R(m)
pII-D NSTX



Machine-size comparison between DIII-D and JET and

aspect ratio comparison between DIII-D and NSTX

 Machine size comparison: DIlI-D and JET vary by a factor of 1.7
— Same resonant field amplification (RFA)
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DIlI-D and JET plasmas probed using non-axisymmetric

external control coils with similar geomeiry

9
» Apply resonant field pulses Bext with one pair
of external control coils (predominantly n=1)
EFCC-caoil
e
» Detect plasma response Brles with toroidal
arrays of B, sensors
Vacuum
vessel C-coil
\ p
DII-D
plasma Vacuum \
' b vessel Br-sensors
Br-sensors
118620 t=1.15s 62645 t=47.0s
[
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High-p plasmas respond to externally applied n=1

perturbations

DIII-D 118620 JET 62028

e Beta exceeds no-
wall limit

e Plasma rofation
provides RWM
stabilization

e Probe plasma E 1 (C-coil) (kA)

with externally R :
applied n=1 field 05} ’ \ m
0.0 & 3

e RFA leads to 10 o= -
- By (Gauss)
plasma response '
detected at the _
(toroidal) node of o0}
the applied field '
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RFA in DIII-D and JET increase significantly once g

exceeds no wall stability limit

« Increase of RFA for BP2S(node)/BEX BP12S(node)/BEX
B>B .. CONsistentwith g 7T
o — DIII-D {HJET
previous observations in 0.10f B, outboard e 1B, outboard
DIlI-D and NSTX [A.C.Sontag mrid-plane o® | mrid-plane
et al, Phys. Plasmas (2005)] 0.08| 1t
— Low B response in JET ' ¢
differs from DIII-D 0.06 ,’,0
0.04} . N
4 i . Q‘
- Measured amplificationin 0.02f ¢ A 1N o, &°
DIII-D twice as large as in o o,
0.00—3>—=
JET L e
'0.02||||||
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
B/Pno wall B/Pro wall
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Comparison of RFA measurements has to account for

geomeiry of magnetic fields and sensor locations

plas
o Similar geometry of applied 3 B
fields in DIII-D and JET
o Similar geometry of plasma = 2 gext
perturbation in DIII-D and JET S plasma /
- Radial decay of external field  m 4| < \
and plasma response cause
radial dependence of Brlas/Bext 0 \_________
— Cylindrical approximation 0 1 1t 2 1 r/a
DlI-D , JET
I's I's Feoil
Bglas/Bsxt om
I - (rs a)
Bé) as/ngt
DIlI-D JET
— Assume effective poloidal mode a (m) 0.54 0.95
number m=2 at outboard midplane rs (M) 0.74 1.61
(ri/a)* 3.5 8.25
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RFA magnitudes at the plasma boundary in

DIlI-D and JET are in quantitative agreement

. Im I:’"“G‘IB‘E"‘) at plasma boundary
* Map RFA to the same location, 0.4 —— . as
e.g. plasma boundary : E * DIID & JET G
« RWM drive described by 3 * ¥
normalized gain over no wall 03fF ¢ * )0 ¢ ]
° ° =L {1: & J
limit (ZB o * x,
i ’. "l' ]
i » ** _'
02 ¢ o *
4
,I
R4
0.1F ! g :
s
SRR I ¢
00t .. 00 . %
00 02 04 06 08 1.0
Cp
Npm!!m!‘:‘;upm ,-; EFDA EUROPEAN FUSION DEVELOPMENT \(_;RillaElla_Nr




RFA magnitudes at the plasma boundary in

DIlI-D and JET are in quantitative agreement

 Map RFA to the same location,
e.g. plasma boundary

e RWM drive described by
normalized gain over no wall
limit C,

* Link quantitative agreement of

RFA to RWM damping rate -y,um

BE" (node) W RWM TW

ext 2
Bs

=> RWM in DIlI-D and JET equally
damped by plasma rotation

(YRWMTW) + ((DRWMIW)

Im I:’"“G‘IB‘E"‘) at plasma boundary
04— T 'j
=i DID & JET K
[ % % ¢
= ‘e 1
03L 8 o %]
Tl t L 2 c' -
4 'a
: Lo
02L > » 31' ** :
: s .
4
,I
[ ¢/ ]
2 0.1F ! ¢ ]
: L 4 zl
L ¢
: ,’ ¢
0.0f...07.%, e .

-> Weaker RWM damping with increasing p
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Machine-size comparison between DIII-D and JET and

aspect ratio comparison between DIII-D and NSTX

 Machine size comparison: DIlI-D and JET vary by a factor of 1.7

— Same crifical plasma rotation for RWM stabilization
* Importance of g=2 surface for rotational stabilization
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Braking of plasma rotation needed for RWM onset

* NBI torque in NSTX, DIII-D and JET is usually provides sufficient rotation for
RWM stabilization
* Increase drag by applying non-axisymmetric fields

— Neoclassical toroidal viscosity (NTV) ,
[Shaing, Phys. Plasmas 10, 1443 (2003)] : TnTy & (68/8)

 Non-linear RWM onset
— Magnetic braking:

d 2
& Qrot o« 0B

— RWM dispersion relation: TRWMTW = f(gfof)

— Evolution of pertfurbed field (RFA and RWM): TW(%éB_YRWMaB) = 0B
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Magnetic braking leads to non-linear RWM onset

Apply n=1 field

Plasma rotation decreases

Onset of fast growth is
preceded by increasing RFA

+

Crifical rotation Q_; measured
at onset of fast growth
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NATIONAL FUSION FACILITY

08

I R I
" field coil (kA)

0.4

0.0 -

150/"'//'J,I |

100

_ |
Plasrrln rotatim Prql (krad:'s]

o

et S o]

|
20|

0.35

040
Time(s)

NSTX




Time of marginal stability determined from start of

fast mode growth

NSTX DIIl-D JET
0 8 T T T T T 116939 4 122046 m - . 6235
| Non-axisymmetfic Error field correction coil (C-coil) (kA) | External non-axisymmetric field i
| field coil (kA 1 40 Gauss) | —— . 1
04t (k) n=1 magnetic - B _B'c?d( )In=1 magnetic i
i braking _ - | 20 | braki
. . ' I J ]
0.0 : . . . . : 68 _ i I
e R i A B
50 - F Plasma rotation Q2,; (krad/s 3 ! .
o| Plasma rotation ©,c; (krad/s ™\ ) T - ol Plasmarotation Q (krad/s)
1 .I 1 1 1] ag ) 1 1 1 1 L ] as I 2 E as v ! I E
Magnitude n=1 £ (Gauss - Magnitude n=1 Bf’l (Gauss) i : ﬁ" node (Gauss) B3] ]
- 1 F I 2 ]
3| I 1F I sl ;
(4]
201 5| ! | , =14 ]
| | | /Mﬁ
| I z
§ | [ ]
0.30 0.35 0.40 B '1.60 1.70 1.80 5.0 55 6.0 6.5
Time(s) Time(s) Time(s)
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Critical rotation in the center of DIlI-D and JET

plasmas decreases with increasing q;

Critical rotation - plasma center

0.06 ——— . e MARS - kinetic damping model
TUE ) : 0.10 [ Center - | |
@ DIlkD (JET shape) ¥ g s .
0.05;-0 JET /§ . 008l © Di-D110634 Ph%
g 4 : o JET62004+ L%
: / * < DI-D109174 4
0.04 / E S 0.06| 7
o - / ] - s 0
2 : /® ] O}E ’
L - / -] _ !
= 0.03f / Rl 0.04 ,
5 E / 7 ] g
G // -7 'S 0.02} ;7
0.02F / Prd E 7
[ / 0 - ] y O
: / g : 0 - - - .
ook / e A ] T
a: // /// ¢ 1/q95
F /- : .
000", .\ . oy * g45-dependence consistent
0.00 0.02 0.041/q 2.06 0.08 0.10 with MARS-F predictions
% => Y.Q. Liu, next talk
— = EUROPEAN FUSION DEVELOPMENT AGREEMENT
Di-p HEFDA JET




Evaluating Q_; at g=2 removes q,.-dependence and

leads to quantitative agreement between DIII-D and JET

Critical rotation at =2 ) q95-dependenc.e cc.:lused by
005 —— T g-surfaces moving inwards

- & DIII-D (JET shape) - towards higher rotation

| @ JET — Stabilization mechanism

+ + ) depends on local g, e.g.

0.010 . kinetic damping [A. Bondeson

L TT ] and M.S. Chu, Phys. Plasmas (1996)].
;1' ______ ﬁ__ _% _____ ] Qcrit 061/q2

""" | * Quantitative agreement in DIII-D
i and JET indicates prominent role
of g=2 surface

4 ' — Consistent with predictions for

_ sound wave damping
0.000 [D. Gregoratto, et al, Plasma Phys.

000 002 004 006 008 040 Control. Fusion (2001)]
1/qgs°  Variations of JET data partially
caused by p-dependence

$crit TA [ 4

,‘.

0.005
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Q.+ has weak g-dependence

Critical rotation at q=2

» Beta-dependence of Q_,; can 0,015 [

account for some of the L o JET
scatter of the measurement - & DIII-D (JET shape)
« Consistent with increase of ' * '
RFA with oot + ]
(o]
_< | '
= 4“ ¢ + |
ER I |
0.005 | 4 .
A4
00 02 04 06 08 1.0
C[J}
"pm!!m!"—mnm ;’.-:; EFDA EUROPEAN  FUSION DEVELOPMENT AGREEMENT




Q.+ has weak g-dependence

« Beta-dependence of Q_; can 0,015 e Critical rotationatg=2
account for some of the Tl e BT --- mw1 J
Kn=
scatter of the measurement o DIIl-D (JET shape) T
» Consistent with increase of [ * '
RFA with ' '
b 0.010 + .
N
i . .
* Value of Q_,; consistent with = §+ + i + |
predictions (using MARS-F) for £ _ ﬁ et e _
— Sound wave damping S 005k &1 L l
L 'l'
A4 o
L4
i 4
00 02 04 06 08 1.0
C[J}
"pm"-!m!"—mnm ;’.-:; EFDA EUROPEAN  FUSION DEVELOPMENT AGREEMENT




Q.+ has weak g-dependence

- Beta-dependence of Q_; can 0,015 e Critical rotationatg=2
account for some of the Tl e BT --- qu J
scatter of the measurement - & DIII-D (JET shape) =— (inetic darnping|

« Consistent with increase of ' * '
RFA with 0.010 - |

‘z,;',’_ ! ]
* Value of Q_,; consistent with = ¢ + '
predictions (using MARS-F) for £ _ A 2 :
— Sound wave damping G 0.005 - Tt _
— Kinetic damping § "o
0.000 Lottt

00 02 04 06 08 1.0
C[J

)
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Machine-size comparison between DIII-D and JET and

aspect ratio comparison between DIII-D and NSTX

o Aspect ratio comparison: DIlII-D and NSTX vary by a factor of 2

— Higher critical rotation at low aspect ratio explained by trapped
particles not contributing to RWM stabilization

— Alternatively, the RWM stabilization is determined by the sound wave
velocity rather than the Alfvén velocity

pII-D NSTX



Critical rotation in NSTX exceeds critical rotation in DIlI-D

Rotation at marginal stability

* g,;-dependence in NSTX similar to 0.3 T BEEaE RN '
DIlI-D and JET .\ — NSTX
S |\ DIII-D _
3 o\ (NSTX shape)]
0.2} :
* Evaluate Q_; at the same valueofq |
= [
o
« NSTX critical rotation Q_,t, at same 0.1p

q always equal or higher
— Rotation for g 2 3 close to zero SN\
¢ 00 3% "'-::-..;'."_\__-
— Single resonant surface can be [ _
sufficient for RWM stabilization L Loves o Lo '

q
pII-D NSTX



Aspect ratio dependence suggests that trapped

particles do not contribute to RWM stabilization

e lon Landau damping

Critical plasma rotation at q=2

significantly reduced for 00 | | | o
trapped particles ® !/

— Assume that only passing T
particles contribute to RWM 0.04 - $ i}
stabilization % ,: T

Q . OCL ljt //,
T 5 L 0.009 R S
G 002  1-¢% §, e 4 |
- Observed doubling of Q_,t, - _-Te NSTX
consistent with stabilization by " 3 DIII-D
passing particles only : (NSTX shape)
— Effect included in the kinetic 6oL .
0.0 0.2 0.4 0.6 0.8

but not in the sound wave
damping model

pII-D NSTX

Inverse aspect ratio ¢



Alternatively - RWM damping could be

determined by sound wave velocity

e Coupling to sound waves
depends on sound time

m.
Te =R !
> 0\/kBTe +kgT;

« Alfvén time and sound
time linked via
1/2

TA 12 « (€I3N/C795)
Ts

— Link is broken by aspect
ratio

* Normalization on sound
time removes aspect ratio
dependence
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Critical plasma rotation at q=2
05— T T T T

0.20

oe*®

T 015] T
w
C S R 31
& 010f i ) -
I v
[ = DY
0.05 | DIII-D NSTX ]
[ (NSTX shape)
0000 o o v ]
0.0 0.2 0.4 0.6 0.8

Inverse aspect ratio ¢

NSTX



Comparison of NSTX, DIII-D and JET establishes

universality of RWM stabilization by plasma rotation

g.s-dependence of Q_,t, explained by re-location of g-surfaces
— RWM stabilization depends on the local g

Quantitative agreement of Q_.x, evaluated at g=2 in DIII-D and JET
— Physics determined by ideal MHD drive and normalized rotation
— =2 surface plays prominent role in stabilization mechanism

Quantitative agreement of RFA in DIlI-D and JET
— Increase of RFA above B, ..o IN qualitative agreement with NSTX

— RFA is manifestation of a weakly damped RWM

Aspect ratio dependence of Q_t, in DIlI-D and NSTX explained by
trapped particles not contributing to RWM stabilization

— Alternatively, the stabilization is determined by the sound wave
velocity rather than the Alfvén wave velocity
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