RWM Feedback of AT plasmas with Audio Amplifiers on the DIII-D Device - Issues of Robustness of Feedback Performance -

by M. Okabayashi¹ Princeton Plasma Physics laboratory,

J. Bialek², M.S. Chu³, A.M. Garofalo², R. Hatcher¹ Y. In⁴, G.L. Jackson³, R.J. La Haye³, G.A. Navratil², H. Reimerdes², J.T. Scoville³ E.J. Strait,³ H. Takahashi¹

¹ Princeton Plasma Physics Laboratory
 ² Columbia University
 ³ General Atomics
 ⁴ FAR-TECH, Inc.

Presented at the 47th APS-DPP meeting Denver, Colorad October 24–28, 2005

OUTLINE

• Two independent power supply system for non-axisymmetric magnetic field is effective and efficient

- Existing Slow Switching Power Amplifiers (SPA) Dynamic Error Field Correction
- New Audio Amplifiers (ĂA): DC- 40 kHz Direct RWM feedback
- With better error field correction, RWM behaves as predicted by theory (without feedback)
 - Together with commonality of RWM in other devices (JET/NSTX) -> added the confidence on RWM physics understanding
- RWM feedback assisted the performance in q>2 AT plasmas
- Without feedback abrupt events (like ELMs) cause bursting RWMs
 - Large ELM event can lead to a major collapse by exciting RWM
- With Feedback feedback reduces the n=1 RWM bursting activity
 - A possible hidden parameter for robust feedback operation can be "ELM event"

Two Independent Power Supply Combination is Effective and Efficient for Improving the n=1 RWM Stabilization

Observed Relation: Real Frequency $\omega \tau_W$ > Growth Rate $\gamma \tau_W$ are Consistent with RWM Theory (Without Feedback)

Audio Amplifiers have been installed to Improve the Time Response

RWM Stabilization Has Opened Path to New High Performance Regimes

 Simultaneous dynamic error field correction and RWM feedback control assists AT operation (β_N ~ 4 with q_min > 2)

Feedback with Audio Amplifiers Reduces the Bursting n=1 Activity

- δ B-max ~ 5 gauss RWM is repetitively excited

Feedback Also Reduces the n=1 RWM Activity at ELM Aftermath

• Sometimes, n=1 RWM amplitude remains finite at the following ELM event

Possible Excitation of Unstable RWM by ELMs (without feedback)

- Hypothesis: Near marginal stability for the RWM ...
 - Sometimes, ELM excites a weakly damped RWM at a large amplitude (\approx 10 Gauss)
 - Magnetic braking by the RWM causes plasma rotation to decrease
 - If sufficient braking occurs during the damping time, the RWM becomes unstable

Feedback Suppressed Large Amplitude RWM Buildup and Allows the Plasma to Survive Transient Intervals of Low Rotation

SUMMARY

• Two independent power supply system is effective and efficient for RWM control,

- SPA : slow, high current with External Coils --> Dynamic Error field correction
- New AA : fast, small current with Internal Coils --> RWM feedback
 - -> G. Jackson CP1.19 Monday afternoon
- RWM (no feedback) is excited as predicted by RWM theory
 - Universality of RWM in other devices added confidence on RWM physics understanding

-> H. Reimerdes GI1.05 Tuesday afternoon (Invited paper)

- RWM feedback assisted the performance in q_{min} >2 AT plasmas -> A.Garofalo U12.03 Friday Morning (Invited paper)
- Without feedback, bursting n=1 RWMs are excited during high beta
 - Possibility of fatal RWM: ELM induces large amplitude RWM leading to rotation collapse
 -> T. Strait : CP1.22 Monday afternoon
- Feedback reduced these n=1 bursting activities
 - Feedback can avoid the beta collapse even though rapid rotational collapse takes place
 - Need of precise mode identification near ELM event -> Y. In: CP1.00021 Monday afternoon
- A possible hidden parameter of robustness for RWM control is "ELM events"
 - will be studied in FY06 with AA currents up to 1200A in balanced NBI low rotation plasmas

-> G. Jackson CP1.19 Monday afternoon

