Progress Toward Fully Noninductive, High Beta Conditions in DIII-D

M. Murakami

in collaboration with

M.R. Wade, 2 C.M. Greenfield, 2 T.C. Luce, 2 J.R. Ferron, 2
H.E. St. John, 2 J.C. DeBoo, 2 W. W. Heidbrink, 3 M.A. Makowski, 4
C.C. Petty, 2 P.A. Politzer, 2 M.E. Austin, 5 S.L. Allen, 4 K.H. Burrell, 2
T.A. Casper, 4 E.J. Doyle, 6 A.M. Garofalo, 7 P. Gohil, 2
I.A. Gorelov, 2 R.J. Groebner, 2 A.W. Hyatt, 2 R.J. Jayakumar, 4
K. Kajiwara, 5 C.E. Kessel, 9 J.E. Kinsey, 10 R.J. La Haye, 2
L.L. Lao, 2 J. Lohr, 2 Y. Luo, 3 T.W. Petrie, 2 R.I. Pinsker, 2
R. Prater, 2 T.L. Rhodes, 6 A.C.C. Sips, 8 G.M. Staebler, 2
T.S. Taylor, 2 M. Vanzeeland, 2 G. Wang, 6 W.P. West, 2
L. Zeng, 6 and the DIII–D Team

1 Oak Ridge National Laboratoty, Oak Ridge, Tennessee, USA
2 General Atomics, P.O. Box 85608, San Diego, California, USA
3 University California, Irvine, California, USA
4 Lawrence Livermore National Laboratory, Livermore, California, USA
5 University of Texas at Austin, Austin, Texas, USA
6 University of California at Los Angeles, Los Angeles, California, USA
7 Columbia University, New York, New York, USA
8 Max-Planck-Institut for Plasmaphysiks, Garching, Germany
9 Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
10 University of Lehigh, Bethlehem, Pennsylvania, USA

Presented at the
47th APS-DPP Meeting
Denver, Colorado

October 24–28, 2005
DIII–D AT Experiments Have Demonstrated Performance Required for an ITER Steady State Scenario

- DIII-D AT program goal: develop the scientific basis for steady state, high performance operation of fusion reactors
- Need to simultaneously achieve two goals:
 1) Steady-state:
 - 100% noninductive
 - High bootstrap current fraction f_{BS}
 2) High performance: Maintaining sufficient fusion gain with reduced engineering parameters:
 - high β_T
 - high τ_E
 \[\Rightarrow \text{High Normalized fusion performance } G = \beta_N H / q^2 \]
- Growing numbers of DIII-D discharges simultaneously achieved $f_{NI} \approx 100\%$ and $G \approx 0.3$
100% Noninductively Driven Plasmas Obtained With Good Current Drive Alignment

- Demonstrated ‘in-principle’ steady state condition at high β
- Inductive current is locally & globally close to zero \Rightarrow good CD alignment
- $f_{\text{ind}} = 0.5\%$, $f_{\text{NI}} = 99.5\%$
- $\beta_T = 3.5\%$, $\beta_N = 3.6$, $q_{95} = 5.0$
- $G = \beta_N H_{89}/q_{95}^2 = 0.3$
Outline

- **Characteristics of full noninductive (NI), high performance discharges:**
 - Analysis of 100% NI discharge:
 - Measurements, analysis, simulation for validation of the models
 - MHD stability
 - Stationarity
 - How are fully NI, high beta conditions achieved?
 - Choice of operational parameters
 - choice of electron density
 - CD alignment
 - Validation of the modeling (GLF23)

- **Modeling applied to predictive simulations:**
 - DIII-D with upgrade capabilities
 - ITER steady state AT scenario

- **Conclusions**
Where We Were in 2003: 100% Noninductive Current Achieved, but Not Relaxed

- Motivated by modeling based on a $f_{NI}=90\%$ discharge in 2002, we increased P_{NB}
- $f_{NI} \approx 100 \%$ with $\beta_N \approx 3.5$, $\beta \approx 3.6\%$
- Locally inductive current is NOT zero
- Neutral beam overdrive near the axis decreases q_0, resulting in NTMs
- These discharges had:
 - Somewhat degraded confinement
 - Rotation velocity often slower
Several Improvements Made During 2004 Campaign Led to Confinement Improvement

- Error field control improved
- Early β feedback
- Improved reproducibility of $q(\rho)$
- Restored $H_{89} = 2.4$

ITER SS target: $G = 0.3$

- $T_i(\rho \sim 0.1) (\text{keV})$
- $T_e(\rho \sim 0.27)$
- $V_i(0)$
- $V_i(\alpha)$

- $f_{NI} = 100\%$
- $N_e (10^{19} \text{m}^{-3})$
- H_{89}
With Improved Confinement, $f_{ni}=100\%$ Achieved with Good CD Alignment

- Equilibrium measurement: $J_{OH} = \sigma_{neo} E_{||} \propto \sigma_{neo} \partial \Psi_{pol} / \partial t \Rightarrow f_{NI} = 1 - f_{OH}$
- $f_{ind} = 0.5\%, \ f_{NI} = 99.5\%$
Transport Code Carries Out Data Analysis Based on Equilibrium Reconstruction with Kinetic Profile Information

- Measurements: $f_{\text{ind}} = 0.5\%$, $f_{\text{NI}} = 99.5\%$
- Analysis shows: $f_{\text{BS}} = 59\%$, $f_{\text{NB}} = 31\%$, $f_{\text{EC}} = 8\%$, $f_{\text{NI}} = 98\%$
- Equilibrium reconstruction (EFIT) lacks spatial resolution
 ⇒ Makes the current balance calculations difficult
Current Evolution Simulation Using Transport Code Allows Equilibrium with Sufficient Spatial Resolution Using Current Drive Models

- Measurement: $f_{\text{ind}} = 0.5\%$, $f_{\text{NI}} = 99.5\%$
- Analysis: $f_{\text{BS}} = 59\%$, $f_{\text{NB}} = 31\%$, $f_{\text{EC}} = 8\%$, $f_{\text{NI}} = 98\%$
- Simulation shows: $f_{\text{BS}} = 54\%$, $f_{\text{NB}} = 32\%$, $f_{\text{EC}} = 8\%$, $f_{\text{NI}} = 94\%$
- How do we resolve the discrepancy of $J_{\text{ind}}(r)$ between the measurement and the simulation?
 - NBCD model
 - Bootstrap current model
Recent Fast Ion Diagnostic Data Suggests Beam Ion Redistribution in the Core

- Anomalous beam ion diffusion \Rightarrow Flatter $J_{\text{NBCD}}(\rho)$

Y. Lou, CP 1.003
The Discrepancy of the Inductive Current Between the Simulation and Measurement Can be Reduced by Redistribution of Beam Ions

- **Measurement:** \(f_{\text{OH}} = 0.5\% \), \(f_{\text{NI}} = 99.5\% \)
- **Analysis:** \(f_{\text{BS}} = 59\% \), \(f_{\text{NB}} = 31\% \), \(f_{\text{EC}} = 8\% \), \(f_{\text{NI}} = 98\% \)
- **Simulation:** \(f_{\text{BS}} = 54\% \), \(f_{\text{NB}} = 32\% \), \(f_{\text{EC}} = 8\% \), \(f_{\text{NI}} = 94\% \)
- **Anomalous beam ion diffusion** \(\Rightarrow \) Flatter \(J_{\text{NBCD}}(\rho) \)
- **Other possible explanation:** Inaccuracy in bootstrap current models
 - Sauter and NCLASS \(\Rightarrow \pm 5\% \) in local and integrated values
 \(\Rightarrow \) Good CD alignment demonstrated
Pressure Evolution Resulted In n=1 Fast Growing Mode Which Triggered n=1 NTM

- Plasma at ideal wall limit to n=1
- Low ideal stability limit due to pressure peaking (primarily density peaking)
- Even with β_N near the ideal-wall limit, the high beta phase almost always ends as a result of a tearing mode
Nearly Full Noninductive, Stationary Discharge Limited Only by Gyrotron Pulse Length

- MSE signals stationary
 \[J_\phi(\rho) \] stopped evolving
- \(f_{NI} \approx 90\% \) for 1 \(\tau_{CR} \) (=1.8 s)
- \(\beta_T = 3.7\%, \ \beta_N = 3.5, \ q_{95} = 5.1 \)
- \(G = \beta_N H/q^2 = 0.3 \) with \(f_{BS} = 63\% \)
Noninductive Conditions Have Been Sustained up to One Current Relaxation Time With 60% Bootstrap Fraction

- Profile database based on TRANSP time-dependent profile analysis
- Typical $\tau_{\text{CR}} \approx 2$ s in these discharges
Global Parameter Database Suggests Noninductive Conditions Favor High β_N

- **Global database:**
 \approx160 shots selected with $\tau_{dur}(\beta_N>0.85\beta_N^{max})>5\tau_E$ or $>0.7s$, $\beta_N>2$, $H_{89}>2$, ...

- **Average noninductive fraction:** $\langle f_{NI}\rangle = 1 - \langle V_{surf}\rangle/\langle R \rangle/Ip$

- **Achieving NI conditions at higher q_{95} substantially compromises fusion performance, $G=\beta_N H_{89}/q_{95}^2$
Noninductive Current is Maximized at Lower Density

- f_{NI} decreases with density
- f_{BS} increases with density, but more slowly than f_{NB} and f_{EC} decrease
- CD alignment figure of merit: $\xi_{tot} = 1 - \frac{\int (n_e/T_e) |J_{OH}| dA}{\int (n_e/T_e) |J_{tot}| dA}$
- CD alignment improves with decreasing density
Glfc3/ONETWO Can Reproduce Experimental Profiles Reasonably Well

- Experimental data chosen in stationary phase independent of ELM timing
- Solve \((T_e, T_i, \Omega_{\text{tor}})\) equations with a fixed \(n_e(r)\) using GLF23 model
- Simulation tends to overestimate \(\Omega_{\text{tor}}\) in the core.
- Simulation without ExB shear stabilization indicates importance with rotation
GLF23 Model Indicates that the Noninductive Current Fraction Increases with Decreasing Density

- GLF23 simulation based on single-null discharge with $f_{NI} \approx 90\%$
 - Trends reproduced well
 - Validate the model
- Similar dependencies found for higher density double-null discharges
- f_{NI} increase with peaked density profile consistent with pumping
- Balanced DN discharge shape increases the ideal, low-n beta limit
Upcoming Work in DIII-D will Allow Noninductive Operation with Optimized Current Profiles at High Beta

- Modeling shows the impact of hardware improvements carried out in DIII-D:
 - Better control of $J(\rho)$ and $p(\rho)$ at high beta with more EC and FW power with long duration
 - Co- and Counter-beams CD/heating inputs and to control momentum
 - DND with pumping for higher β_N
Density Scan Simulation for ITER with Day-1 H/CD Capabilities Finds $f_{NI} \approx 100\%$, $Q \approx 5$ and $f_{bs} \approx 75\%$ at $N_{GW} \approx 1$

- Simulation carried out with 100-s time-stepping simulations of $(T_e, T_i, \Omega_{rot}, j, \text{equilibrium})$ with a fixed $n_e(\rho)$ shape using GLF23 model

- A few more iterations of the time-stepping simulations are needed for more relaxed internal loop voltage

GLF23/ONETWO
\begin{align*}
B_T &= 5.3 \text{ T} \\
I_p &= 9 \text{ MA} \\
q_{95} &= 5 \\
P_{NB} &= 33 \text{ MW} \\
P_{IC} &= 20 \text{ MW} \\
P_{EC} &= 20 \text{ MW}
\end{align*}
GLF23/ONETWO Modeling for ITER
Steady State Scenario

- Beta value where the boundary conditions imposed ($\rho=0.9$) on the simulation is only slightly above the DIII-D case (1.3% vs. 1.0 %)
- A larger pedestal width is assumed, as observed in the experiment, gives bigger stability margin for peeling-ballooning mode
Conclusions

- 100% noninductively driven plasmas obtained with good CD alignment at $\beta_T \leq 3.6\%$, $\beta_N \leq 3.5$ and $H_{89} = 2.4$; duration was limited by pressure profile evolution to unstable MHD for $0.5 \tau_{CR}$.
 - Validated the current balance calculation
- Nearly (~90%) noninductive, stationary discharges were sustained for 1 τ_{CR}, only limited by present hardware limits
- These experiments have achieved normalized fusion performance $G=0.3$ and $f_{BS}=60\%$, consistent with requirements for the ITER $Q=5$ steady state scenario
- With good coupling between experiment and modeling, progress has been made in several important areas:
 - Current drive alignment
 - Optimization and density for noninductive operation
Conclusions (continued)

- Future plans of DIII-D include exploring stability boundaries using more EC and FW power with long duration, double-null divertor with pumping and co + counter NBI
- Modeling tools that were successfully employed to devise experiments in DIII-D, when applied to ITER, indicate full noninductive operation is plausible for steady state operation with $Q \approx 5$

⇒ The scientific basis being developed on DIII-D is leading to increased confidence in establishing steady state scenarios for ITER and beyond