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INTRODUCTION AND OVERVIEW

- Core turbulence in H-mode discharges are investigated via the
significantly upgraded Beam Emission Spectroscopy (BES) at DIlI-D

- Turbulence characteristics are examined during p* scan of Hybrid Scenario
(H-mode) discharges, a stationary plasma at high beta with good confinement

p* scan performed to examine non-dimensional scaling of turbulence
characteristics

Broadband fluctuation levels measured and compared (n/n < 1%)
Radial and poloidal correlation lengths
Decorrelation times

Flow shear of turbulence (vg,g vS. Vg Bgs)

«  Tilted turbulent eddy structure observed in H-mode, and not in L-mode

Finite time-lag observed in radial cross-correlations
2D spatiotemporal correlation functions examined

Visualization of core L-mode and H-mode turbulence
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ABSTRACT

The characteristics of long-wavelength density fluctua-
tions k p| are examined in the core region (0.5 < r/a <

0.9) of H-mode discharges and compared to turbulence
in L-mode discharges. Measurements are obtained with
the upgraded 16-channel (4-radial x 4-poloidal), high-
sensitivity beam emission spectroscopy system at DIll-
D. The p* scaling of turbulence structures in hybrid sce-
nario H-mode plasmas demonstrates that the radial cor-
relation lengths scale closely with the local ion
gyroradius, as predicted theoretically and observed in L-
mode plasmas. Eddy spatial structures, in contrast, dif-
fer dramatically between L and H-mode plasmas, with H-
mode turbulence exhibiting a highly tilted structure in
the radial-poloidal plane, as measured via 2D spatiotem-
poral correlations. Whether this difference results from
flow-shear, radial propagation, or inherent turbulence
dynamics will be investigated via comparison to mea-
sured flow shear.
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BEAM EMISSION SPECTROSCOPY MEASUREMENT OF
LONG-WAVELENGTH (k; p; < 1) DENSITY FLUCTUATIONS
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BES SYSTEM SIGNIFICANTLY UPGRADED TO ENHANCE
SENSITIVITY FOR CORE TURBULENCE AND NONLINEAR STUDIES

Upgrades: R
e Increased Optical Fiber Light Collection Area 3.0 pr———————
—~ 25}
e Advanced Filters to Exploit Thermal CX emission 2 20
® 1.5} .
b Eff : : 5 1.0}
e Improved High-Efficiency, High Throughput Optics |7 05t
e Larger Area Photodiode I
: : — 0 1 2 3 4 5 ¢
e Higher Resolution, Deep Memory Digitizers Time
/ (sec)

Result:

5-10x Increase in Signal — 10-30x Increase in Signal-to-Noise Power
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TURBULENCE CHARACTERISTICS MEASURED VIA RADIAL SCANS OF BES

N

Upgraded, high sensitivity BES system measures turbulence
in high confinement/low-turbulence plasma conditions

. 4x4 Channel Grid
(Radial/Poloidal)
3.5x4.5cm

R - Located on outboard
midplane

o o
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. — - Radially Scanned shot-
to-shot
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HYBRID SCENARIO DISCHARGES ACHIEVE HIGH PERFORMANCE
WITH STATIONARY CONDITIONS

- “Hybrid” scenario discharges seek to achieve high beta and good
energy confinement at moderate q: overall performance between
conventional ELM’ing and Advanced Tokamak:

- Stationary performance on T, time-scale (55 tg, 9 1;)

- Pressure near n=1 no-wall beta limit

- Good energy confinement (20-50% above conventional scaling)
- ExB shear mitigates transport according to GLF23

- Small 3/2 NTM inhibits sawteeth, help sustain performance

- Wide operational range: 2.8 < q95 < 4.7; 0.35 < ng < 0.7

- Projects to Qg = 10 - 40 operation in ITER
- Hybrid Scenario discharges achieved on DIII-D, JET, JT-60U, ASDEX-U

* Nearly stationary plasma conditions for many Te (several seconds)
- Permits long-time ensemble - averaging of fluctuation data
to improved signal-to-noise
- p* scan performed to examine turbulence and transport scaling
- 1.6 *change in p
- Other relevant dimensionless parameters held nearly constant

DIlI-D
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p* ScAN oF HYBRID DISCHARGES PERFORMED TO EXAMINE
TURBULENCE AND TRANSPORT SCALING
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PROFILES FOR p* ScAN OF HYBRID DISCHARGES
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PROFILES OF DIMENSIONLESS QUANTITIES REASONABLY WELL MATCHED
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EXB SHEAR STABILIZATION SUSTAINS LOwW TRANSPORT

. GLF23 simulations demonstrate role of shear stabilization of turbulence
to maintaining high confinement

('Radial Electric Field Profile ) ( wexgShear Profile )
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NORMALIZED DENSITY FLUCTUATION LEVELS < 1%;
ExHIBITS LITTLE DEPENDENCE ON p*

(Density Fluctuation Spectrum] [Profile of Fluctuation Amplitudes]
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Fluctuation amplitudes much lower than L-mode (~one order of magnitude)
- Typical amplitude n/m< 1%

- Spectra Doppler shifted (greater shift at low-p* due to higher power
and torque to match the Mach number)

Low turbulence amplitude qualitatively consistent with high confinement:
H89P =2.1 , H98y2 =1.3
Not consistent with gyroBohm predictions (n/n ~ p*): why is this?
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RADIAL CORRELATION LENGTHS OF TURBULENCE SCALE WITH ()

- Correlation functions broaden in core relative to edge, as expected with
increasing temperature

- 4-point measurement with 4x4 array allows for improved accuracy

CRﬂdiﬂ' Correlation Functions) (Corre|at|on Length Prof“e)
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pr-p (Vckee et al., IAEA-2000, Nuc. Fus. 2001)
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DECORRELATION TIME AND POLOIDAL CORRELATION LENGTH
OF TURBULENCE

Gyrokinetic equations predict 1, ~ a/cg with p* scan
Poloidal correlation lengths exhibit little dependence on p*

[Decorrelation Time] Poloidal Correlation
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Low turbulence amplitude and limited spatial extent of measurements
leads to significant noise in derived parameters
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FINITE RADIAL TIME-DELAY APPARENT IN HYBRID SCENARIO PLASMAS

- Correlation functions indicate wavenumber spectra has finite k, , radially outv
- L-mode plasmas typically exhibit k=0 (except at very edge)

Time-Lag Cross-Correlation Functions Time-Delay at Cross-Correlation
for i mcreasmg AR peak amplitude
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- Characteristic of Hybrid scenario discharges (and H-modes in general)
- Consistent feature across 4 radial arrays and mid-radii, 0.6 <r/a < 0.9
- Finite k, condition ceases near inside of pedestal region, r/a> 0.9
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FINITE RADIAL TIME DELAY OBSERVED ACROSS 2D MEASUREMENT ARRAY

V = AX/ty4 - Simple relation no longer
correct; requires geometric correction
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WHAT MiGHT CAUSE FINITE RADIAL TIME-LAG?

Strongly tilted eddies in the radial-poloidal plane propagating passed fixed

detectors
—>>
V=Ve - N
Use 2D Spatiotemporal
Cross-correlation to
examine propagation
_ _ _ dynamics
Radial propagation of eddies (direct visualization
challenging at low
O O O fluctuation amplitudes
\_ J
O O ‘ O V=V, + Vg
bin-o
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“ExPANDED” 2D SPATIOTEMPORAL CORRELATION FUNCTION
OBTAINED FROM ENSEMBLE-AVERAGED 2D DATA

BES Channel Inferred 7x7
Configuration Correlation Matrix Smoothed Image
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STRONGLY-TILTED TURBULENT EDDY STRUCTURE IN H-MODES
THAT IS NOT APPARENT IN L-MoDE EDDY STRUCTURES

2D Spatial Correlation Function (At = 0) see time-resolved
in (Hybrid) H-mode Discharge correlation function
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TILTED EDDY EXPLAINS OBSERVED RADIAL TIME-DELAY

Consider simple elongated, tilted structt
advecting purely poloidally through fixe«
detection locations

AR tan(¢)
TR = V(.)

= 3.0 cm * tan(50°)/22 km/s
\"
0 = 1.6 us (tilting effect)
= 2.0 us (measured)

Quantities from
Shot 121961

Measured time-delay and that inferred
from poloidal velocity and structure
compare well
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MeASURED PoOLOIDAL TURBULENCE VELOCITY COMPARES
WELL TO MEASURED EXB VELOCITY

and measured turbulence velocity

Comparison of ExB velocity from CER
from BES

vggs Obtained from time-lag
cross correlation measurements
from BES:

represents advection of turbulent
eddy structures

40
30F

20 Vgyg Obtained from CER

measurements of ion distribution
and radial force balance

10}

Veyxsr Vo Bes (KM/S)

Turbulence expected to
advect at near ExB velocity

. * . .
x assuming v ; is small (as is

00 02 04 06 08 the case)

Minor Radius (r/a)
(Indeterminent

Points)

Velocity shear can be obtained from CER measurements or directly
from BES measurements
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VELOCITY SHEAR APPEARS TOO SMALL TO EXPLAIN EDDY TILT

L
< o > [Simple Eddy Shear Model]

ALg ~ dvg/dr " L¢  * ¢
with
Vg(R+Lg ) vg(R) dvg/dr - measured shearing rate
Le " - radial correlation length
To - decorrelation time (eddy lifetime)

ALg ~ (7 x 104 s71)(3 cm)(5 us) ~ 1.0 cm
(or about 20 degree tilt)

Significantly less than observed tilt:
ALg ~ 4 cm, (50 degree tilt)

dvg/dr

Simple shear appears too small to explain

0 T eddy tilt:
T More fundamental differences in L-mode

R vs H-mode turbulence likely needed
to explain difference
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DRAMATIC INCREASE IN CORE TURBULENCE AT H-L BACK TRANSITION

- One discharge “accidentally” had an H-L back transition, allowing direct
comparison of turbulence characteristics at mid-radius

CFIuctuation Spectra, r/a=0.6) C Fluctuation Amplitudes )
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s E S 0.25f /\/ 3
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C% ‘ ] = - .
(0] " IR I P I U i o I X L 000B . .\ 0
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- Indicates that turbulence parameters change dramatically in core,
in addition to edge region

- Poloidal Flow Shear in L-mode generally too small to incur tilt based
on model shown previously

DIlI-D
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PROFILES RELAX SIGNIFICANTLY AT H-L BACK-TRANSITION

Both magnitude and gradients of density and electron temperature vary:
- Higher gradients in L-mode phase

- Higher magnitude in H-mode phase

Can be expected to lead to large changes in turbulence

(keV)

T

--- I L-mode

00 02 04 06 g 1.0 00 02 04 .
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BES Measurement
Locations
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SUMMARY

p* Scaling of Turbulence Characteristics in H-mode:
1) Radial Correlation Length Scales with local ion gyroradius: L, ~ 5*p;
2)  Amplitude does not exhibit gyro-Bohm scaling: n/n ~ constant

3) Decorrelation time scales as T~ a/c (gyro-Bohm like)
4) Poloidal turbulence velocity (BES) matches measured ExB (CER)

Tilted Turbulent Eddy Structure in H-mode
- Small amplitude fluctuations ( n/n = 0.1-0.5%)

- Eddies sharply tilted in radial-poloidal plane in H-mode plasmas
- L-mode eddies are elliptical, do not exhibit tilt
- Poloidal flow shear appears insufficient to explain tilt
- 2D spatiotemporal cross-correlation suggests no radial propagation

- Finite radial wavenumber observed from 0.5 < r/la < 0.9
contrasts with L-mode plasmas (k, = 0)
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