Neoclassical Tearing Mode Stabilization with Optimal Electron Cyclotron Current Drive Alignment in DIII-D

by R.J. La Haye for the DIII-D Team

Oral at the 47th DPP APS Meeting Denver, Colorado

October 24-28, 2005

Preemptive ECCD Can Avoid a NTM Occurring I.

- ECCD stabilization requires precise alignment ($|\Delta\rho|/\delta_{eccd} \le 0.5$)
- Adjust plasma major radius to put q=3/2 surface on pre-programmed target
 - ★ accurate location of rational surfaces
 with motional Stark effect diagnostic
- ★ Shafranov shift compensated
 no m/n=3/2 NTM appears

Preemptive ECCD Can Avoid a NTM Occurring II.

• Refraction of ECCD can lead to misalignment if not accounted for

Real-time Compensation for Refraction of ECCD is Now Implemented in the Plasma Control System

- R_{ECCD} "target" is robust for given toroidal field
 - ★ but refraction can change Z_{ECCD} "target"
- PCS real-time ECCD <u>target</u> implemented to track δZ_{ECCD}
 - \star for better alignment of ECCD and q=3/2 (or q = 2/1)

- uses central and outer interterometer chords

Preemptive ECCD and "q-Feedback" Also Used to Stabilize Otherwise Unstable m/n = 2/1 NTM

- Hybrid scenario with m/n=3/2 NTM keeping q(0)≈1
 - **\star** Toroidal field adjusted by real-time MSE EFIT to keep peak j_{eccd} on q = 2

Progress in NTM Control by ECCD in DIII–D Includes . . .

- Real-time tracking of <u>both</u> rational surface and ECCD locations
- Higher stable beta to m/n = 3/2 mode

★ in sawteething H-mode

• Higher stable beta to m/n = 2/1 mode

★ in hybrid scenario

2006-2007 Campaign NTM Stabilization Plans Include

- Preemptive ECCD for no 2/1 mode at $\beta_N > 4\ell_i$ in hybrid scenrio
 - ★ proximity to pole in Δ' ?
- ECCD control of BOTH 3/2 and 2/1 modes in sawteething H-mode
 - ★ real-time mirror steering and 6 gyrotrons
- Verifying modulated ECCD effectiveness
 - ★ new counter beams
 - n=2 Mirnov frequency ≈ 20 kHz → ≈ 5 kHz
 - ... well within gyrotron modulation capability

(See also A.S. Welander CP1 Mon. aft. and D. Humphreys LI1b Wed. aft.)

While Narrowest Unmodulated ECCD is Routinely Used, the Issue of Wide ECCD in ITER is Also Being Investigated

- S'crow (0.69 MW) more effective than S'crow, Katya, Tinman (0.84 MW total)
 - ★ but 3/2 island locking to sawteeth ($f_{32} = 2f_{11}$) reduces expectation

