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Over 320 Nonlinear Gyrokinetic Simulations
Have Been Performed Using The GYRO Code

• A nonlinear simulation database has been created for
benchmarking and transport model development

http://fusion.gat.com/comp/parallel

• Scans in R/a, r/a, q, s, α, a/Ln, a/LT, ν, β, Ti/Te, κ, δ, dilution,
and ExB shear with and without kinetic electrons (most runs
w/ kinetic electrons)

• Simulations around several reference cases assuming s-α
geometry, electrostatic (except for β scan), and flat
profiles across annulus, zero boundary conditions
– GA Standard Case (STD): R/a=3, r/a=0.5, q=2, s=1, α=0,

a/LT=3, a/Ln=1, Ti/Te=1, ν=0, β=0

– TEM1 Case: STD w/ a/Ln=2, a/LT=2

– TEM2 Case: STD w/ a/Ln=3, a/LT=1

• Miller geometry used for κ and δ scans

• Diffusivities shown are time-averaged values and are
normalized to the gyro-Bohm diffusivity, χGB=csρs
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Nonlinear Database Comprised of Parameter Scans

• Temperature and density gradient scans : 25 kinetic electron
simulations (plus 6 kinetic electron Cyclone simulations, J. Candy)

• Safety factor and magnetic shear scans :123 kinetic electron
simulations J.E. Kinsey, R.E. Waltz, J. Candy, submitted to Phys. Plasmas

• Aspect ratio and minor radius scans : 12 kinetic electron
simulations

• Collisionality and Ti/Te scans :10 kinetic electron simulations

• Elongation and triangularity scans : 5 adia. electron + 34 kinetic
electron simulations

• ExB velocity shear scans: 84 adia. electron and kinetic electron
simulations

J.E. Kinsey, R.E. Waltz, J. Candy, Phys. Plasmas 12, 022305 (2005).

• Beta scans (J. Candy) : 14 kinetic electron EM simulations
J. Candy, Phys. Plasmas 12, 072307 (2005).

• He dilution scans (C. Estrada) : 19 kinetic electron simulations
C. Estrada-Mila, J. Candy, R.E. Waltz, Phys. Plasmas 12, 022305 (2005).
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Temperature Gradient Scan for STD Case
Including Kinetic Electrons

• STD case scans in a/LT w/
a/Ln=0.5, 1.0, and 1.5

• Transport not as stiff at low
gradients for peaked
density (a/Ln=1.5)

Flat
Density

Peaked
Density

STD
Case

TEM

* Note: error bars on plots are a measure of intermittency and NOT uncertainty
χGB = csρs
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Density Gradient Scan for STD Case

• STD case a/Ln scan with
a/LT=1.0

– Ion and electron density
gradient varied together

• Particle diffusivity changes
from negative (inward) to
positive (outward) as
density gradient is
increased

– D=De=Di due to
ambipolarity

• Electron energy and
particle transport show
stronger dependence on
a/Ln than ion energy
transport

STD Case

Flat density Peaked density
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Temperature Ratio Scan for STD Case

• STD case Ti / Te scan at
fixed a/LT

• Ion energy diffusivity
modestly reduced going
from Ti / Te =1 to Ti / Te =2

• Electron energy transport
fairly insensitive to Ti / Te

• Particle pinch somewhat
reduced as Ti / Te is
increased

• Linear stability of spectrum
for Ti / Te =2 shows ITG
modes below kθρs=0.3 and
TEM modes above kθρs=0.3

STD Case
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Aspect Ratio and Minor Radius Scans for STD Case

• Scans in R/a and r/a for STD parameters with kinetic electrons

• Strong reduction in transport below A=2 which is consistent
with previous linear gyrokinetic studies (e.g. Rewoldt)

• Nearly linear increase in transport with increasing r/a at fixed
R/a

R/a scan r/a scan
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Shorter Wavelength Modes Drive Outward Flow at
High Aspect Ratio

• Particle pinch predicted at low-medium aspect ratio

– At A=R/a=3.0, all modes in spectrum drive a pinch

• Null flow point near A=5.0
– Modes above kθρs=0.15 drive an outward flow

A=3.0 A=5.0
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Particle Pinch Strongly Impacted By Collisions

• Particle pinch predicted for
STD case w/o collisions

• Addition of collisions
increasingly eliminates
particle pinch driven by low
ky modes

• Electron energy transport
insensitive to collisions

ν=0.02

ν=0.10
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Ion and Electron Transport Exhibits Linear q
Dependence in STD Case Kinetic Electron Simulations
• Energy transport exhibits

linear q dependence for
both positive and negative
shear
– D also follows linear q

dependence if D is positive

– Spectral downshift w/
decreasing q is evident

– Small contribution to χe
from higher kθρs modes

• Particle transport insensitive
to q for s=1.0 case where D
is negative
– Passing electron

contribution to D changes
sign near q=2

– Dpass/Dtotal small (0.1-0.2)
but large enough to
impact q scaling

χe

χi
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TEM Cases Also Exhibit Linear q Dependence

• TEM1: STD parameters w/ a/LT=2, a/Ln=2

 (half of modes in ion direction, others in electron direction)

• TEM2: STD parameters w/ a/LT=3, a/Ln=1
(All modes in electron direction)
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GAM Amplitude Increases With Increasing q

• Geodesic Acoustic Modes
evident at n=0 at                  
ω(a/cs) = ±0.75

• Amplitude in simulations is
consistent with q scaling of
GAM damping rate:

γG = - ωG exp(-q2)

where ωG is the GAM
frequency (Hinton, 1999)

• Fluctuations ITG dominated in
q=4 case with 1 peak at
negative ω(a/cs)

• Spectrum shows both ITG and
TEM peaks for q=1.25 case

ITG TEM
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At Low q, n=0 Amplitude Larger Than Neighboring
n > 0 Mode Amplitudes

• Time-averaged RMS
spectral intensity of the
potential fluctuations
compared for STD case w/
q=1.25 and q=4.0

• Spectral intensity shown in
(kx,ky) plane where kx=krρs
and ky=kθρs

• Also evident that higher ky
modes contribute more to
transport at low q
compared to high q
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Particle Diffusivity Can Change Sign As Magnetic
Shear Is Varied

• Magnetic shear s varied at
fixed q for α=0 and α=1

• For STD case, null flow point
found at s=0.5 for α=0

– D negative for s > 0.5

– D positive for s < 0.5

• Alignment of null point with
maximum in χ particular to STD
parameters

• Alpha stabilizing for negative
shear (e.g. s=-0.5), and
destabilizing for positive shear
(e.g. s=2)
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α=0

α=1



J. Kinsey - APS05

Spectral Analysis at Null Point Shows Some Modes Drive
A Negative Flow With Other Modes Drive A Positive Flow

• Spectrum includes 16 toroidal
mode numbers with a
maximum kθρs=0.75

• Null flow point at s=0.5
– Linear stability shows

transition from ITG to TEM
above kθρs=0.65

• Time-average particle
diffusivity is negative for s=1.5
and positive for s=-0.5
– Linear stability shows TEM

above kθρs=0.50 for s=1.5

– Linear stability shows TEM
above kθρs=0.65 for s=-0.5
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Ratio Of Ion to Electron Energy Transport Changes
Dramatically With Magnetic Shear

• For STD case, ratio of χi/χe changes significantly with shear
– At s=2, χi/χe=9.7

– At s=1, χi/χe=3.4

– At s=-1, χi/χe=1.6

^

^

^
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The Effects Of Elongation and Triangularity On Turbulent Transport
Have Been Investigated Using The Miller Equilibrium Model

• Nine parameters are required to describe the local equilibrium using
Miller geometry 

1
 :  κ (elongation), δ (triangularity), q, s (magnetic

shear), α (normalized pressure gradient) , A=R0/r, ∂rR0, along with
gradient factors of κ and δ (sκ and sδ)

• For D-shaped plasmas, the shape of a flux surface is specified in terms
of the major radius R and height Z as a function of the poloidal angle θ:

R = R0+ r cos[θ + (sin-1δ)sin θ]
Z =  κ r sinθ

• Systematic nonlinear scans in κ and δ were performed for the STD case
with ∂rR0=0, α=0, β=0

– For κ scans, we also varied sκ=(r/κ)∂rκ ≈ (κ-1)/κ

– For δ scans, we also varied sδ =(r/(1−δ2)0.5)∂rδ ≈ δ/(1−δ2)0.5

^

1 R. L. Miller, et al, Phys. Plasmas 5, 973 (1998).
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Adiabatic Electron Simulations Show The Ion Energy
Transport Decreasing Linearly With Increasing Elongation
• κ varied from 1 to 2 for STD

case using Miller geometry
– kappa gradient factor sκ

varied along with κ

– GYRO results for χnatural where

χnatural =<|   r|2> χITER

For concentric ellipses
where “r” is the midplane
minor radius:

<|   r|2>=(1+κ2)/(2κ2)

Bunit=(ρ/r)(dρ/dr)B0 ≈ κ2B0, so

χITER ≈2/(1+κ2) χnatural

• Previous NL gyrofluid
simulations by Waltz1

showed no κ dependence
for χnatural at q=2 (and q=3)

Adiabatic Electrons
STD case w/ q=2, δ=0

! 

"

χnatural = χ / χGB where χGB =csρs
2/a

1 R. E. Waltz, and R.L. Miller, Phys. Plasmas 6, 4265 (1999).

! 

"
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Kinetic Electron Simulations Also Shows Energy Transport
Decreases Linearly With Increasing Elongation

• Linear decrease in both χe and χi
valid for κ scans at different
safety factors
– κ varied from 1.0 to 2.0 for

different q values and for
different shear values using STD
parameters with s=1.0

– Miller geometry with δ=0;
kappa gradient factor 
sκ=(κ-1)/κ varied along with κ

– Offset linear gives best fit to NL
results. Growth rate at kθρs=0.3
shows same dependence

– Particle transport shows little or
no κ dependence

Caveat: D is small and negative
-> follows κ-1 dependence if D is

positive (see shear scan)

q=4

^

q=1.5
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Dependence of Transport on Triangularity Weak For
Circular Plasmas, Stronger For Elongated Plasmas
• δ varied for κ=1.0, 1.5, and 2.0 using STD parameters

– Miller geometry, delta gradient factor sδ varied along with δ

• Stronger δ dependence for κ=1.5, 2.0 cases compared to κ=1.0 case
– δ destabilizing, especially for χe and D, going from δ=0.0 to δ=0.5

κ=1.0 κ=1.5

sκ=0.33
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Triangularity Strongly Impacts Particle Transport Spectrum
For Elongated Plasmas
• δ varied from 0.0 to 0.5 for STD case w/ κ=2.0

• Particle transport changes from D/DGB=-1.73 to D/DGB=+0.51
– Transport from low k modes changes sign
– Less of an effect at κ=1.0 (D/DGB=-0.8 -> D/DGB=-0.1 when δ=0.0 -> 0.5)

δ=0.0 δ=0.5

D=-1.73 D=+0.52
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Nonlinear Gyrokinetic Simulations With Adiabatic Electrons Show
Higher ExB Shear Quench Point Compared to Gyrofluid Simulations

• ExB shear quench rule originally
developed from gyrofluid ITG
simulations which showed a
quench point at γE=γmax

• Using GYRO with no parallel
velocity shear (γp =0), two
quench points can be found
depending on how the ExB
shear is applied in the
simulations
− ITG transport quenches at

γE=1.6γmax when γE applied at
onset of simulation

− Quench point higher near
γE=2γmax when γE applied in a
restart from simulation without γE
included

• Purely toroidal rotation case with γp =(Rq/r) γE=12γE shows that
transport not quenched by any level of γE
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ExB Shear Quench Rule Remains Valid With Addition Of
Kinetic Electrons In Nonlinear Gyrokinetic Simulations

• ExB shear quench point near
γE=2γmax for ions and electrons
− Same quench point found for

the adiabatic electron case

− Also valid for TEM cases (e.g.
STD case w/ a/Ln=3, a/LT=1)
and for negative shear (e.g.
STD case w/ s=-0.5)

• Gradual reduction to zero
transport near quench point
− Sharp drop in χ near quench

point seen in adiabatic runs
NOT seen with kinetic electrons

• Transport not quenched when parallel velocity shear
included (assuming purely toroidal rotation with
γp =(Rq/r) γE=12γE

16 modes
kθ ρs <= 0.75
γmax0 = 0.27
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Summary

• A large database of over 320 nonlinear GYRO gyrokinetic simulations
has been created comprising of various parameter scans around
several reference cases
− Scans in R/a, r/a, q, s, α, a/Ln, a/LT, ν, β, Ti/Te, κ, δ, dilution, and ExB shear with and

without kinetic electrons (most runs w/ kinetic electrons)

• Aspect ratio scan shows strong reduction in transport below A=2, weak
reduction going from A=3 to A=5
− Strong particle pinch near A=2

− At high A, low-k modes drive a pinch while higher-k modes drive an outward flow

• Safety factor scans show that the Ion and energy transport exhibits
linear q dependence for both ITG and TEM dominated cases
− Spectral downshift with increasing q which contributes to most of q-1 dependence of

transport

− D also exhibits linear q dependence if D is positive. If D is negative (pinch), then overall
q dependence weak due to change in sign of passing electron contribution as q is
varied

− GAM amplitude increases with increasing q; amplitude and frequency consistent with
analytic calculations by Hinton, et al.

− n=0 amplitude greater than neighboring n>0 amplitudes at low q, comparable
amplitudes at higher q values
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Summary (cont.)

• Magnetic shear scans show that particle diffusivity can change sign as
shear is varied
− At null flow point, some modes drive a pinch while other modes drive an outward flow

− Ratio of ion to electron transport changes dramatically with shear (χi/χe largest for large positive
shear, smallest for negative shear)

• Adiabatic and kinetic electron simulations robustly show that χnatural
exhibits an inverse linear dependence on elongation
− Unlike prev ious gyrofluid ITG simulations by Waltz, we find κ-1 regardless of q and s values

− Particle transport also exhibits κ-1 dependence if D is positive

• Dependence on triangularity strongest for highly elongated plasmas,
weak effect for circular shaped plasmas
− Triangularity destabilizing for both energy and particle transport

− Triangularity has significant impact on particle transport spectrum at high elongation; transport from
low-k modes can change sign as δ is varied

• ExB shear quench rule remains valid in the presence of kinetic
electrons with a quench point at γE=2γmax for ions and electrons
− Quench rule valid for both ITG and TEM cases

− Transport may not be quenched at higher q values if parallel velocity shear included in simulations


