APS 2005, Denver Colorado, 10/24/05-10/28/05 Poster CP1-19

RWM Stabilization in DIII-D Using I-Coils With High Speed Actuators*

G.L. Jackson, A.G. Kellman, R.J. LaHaye, J.T. Scoville, E.J. Strait, *GA*, J.M. Bialek, A.M. Garofalo, O. Katsuro-Hopkins, G.A. Navratil, H. Reimerdes, *Columbia*, Y. In, *FarTech*, *Inc*. A. Nagy, M. Okabayashi, H. Takahashi, *PPPL*–

A new prototype actuator system driving 12 internal coils (I-coils) was used to help stabilize resistive wall modes (RWMs) up to beta_N~4. This approach is an alternative to rotational stabilization, which may not be adequate for fusion devices. VALEN modeling shows that as beta_N approaches the ideal wall limit, higher bandwidth and lower system delay time are required to stabilize the larger RWM growth rates. This actuator system consists of 6 transistor amplifiers (dc-40kHz), configured in 3 pairs, each driving 4 I-coils in an n=1 configuration. Initial experiments include the combination of I-coils for fast RWM stabilization and external C-coils with higher current capability for slower response dynamic error field correction. Effects of noise, maximum actuator current, and feedback system delay time on maximum achievable beta_N will also be presented.

RWM Research in DIII-D Provides Input for the ITER Design

- Demonstrate RWM stabilization in low rotation plasmas above the no-wall limit and extrapolate to ITER
- Evaluate internal vs. external coil sets and their applicability for ITER

Physics Goals for this Research Require RWM Stabilization at high β_{N}

- Sustained, robust stabilization at C_{\beta} up to 0.7 and $\beta_N \sim 4$, where C_{\beta} =1 is the ideal β wall limit
- Transient operation at $C_{\beta} \sim 0.9$ or greater
 - Stabilization of maximum growth rate, $\gamma = 3000 \text{ s}^{-1}$ (includes 50% safety margin)

 $[C_{\beta} = (\beta - \beta_{no_wall}) / (\beta^{ideal_wall} - \beta_{no_wall})]$

DIII–D's Internal Control Coils are an Effective Tool for Active and Passive Stabilization of the RWM

- Inside vacuum vessel: Faster time response for feedback control
- Closer to plasma: more efficient coupling

- 12 "picture-frame" coils
- Single-turn, water-cooled
- 7 kA max. rated current
- Protected by graphite tiles

External Coils

I-coil Should Provide RWM Stabilization Comparable to an Ideal Wall

- Modeling with VALEN (3D electromagnetics code) using realistic geometry
 - Idealized amplifiers (optimistic)

MODELING OF THE DIII-D RWM FEEDBACK SYSTEM SHOWED THE NEED FOR HARDWARE UPGRADES

- Larger bandwidth to stabilize RWMs, especially at low rotation or near the ideal wall β limit
 - 20 kHz or higher
- Lower feedback system latency, i.e. shorter time delays 65 μs or lower
- Required I-coil current determined by system noise
 800 A

DIRECT FEEDBACK CONTROL AT HIGH β_N REQUIRES A FAST FEEDBACK SYSTEM

- - Large amplifier bandwidth ($\gamma\tau_{band}$ < 0.4)

NEW HARDWARE (AUDIO AMPLIFIERS) EXPANDS THE OPERATING SPACE, ALLOWING OPERATION NEAR THE IDEAL WALL LIMIT

Growth Rate $\gamma \tau_{w}^{\star}$

HIGHER SYSTEM BANDWIDTH CAN STABILIZE FASTER GROWTH RATES (OCCURRING AT HIGHER C_β)

TIME DEPENDENT VALEN MODELING SHOWS RWMs ARE STABILIZED IN THE PRESENCE OF NOISE AND ELMS

O. Katsuro-Hopkins

jackson, APS05

HIGH BANDWIDTH TRANSISTOR AMPLIFIERS MEET THE DIII-D DESIGN REQUIREMENTS

Audio Amplifier

- DIII-D amplifiers derived from audio amplifier technology
 - 100 V peak
 - 200 A peak
 - Voltage Gain ~ 30
 - Parallel operation (up to 6=1200A)
 - DC to >40kHz
 - 8-9 μs amplifier delay time
 - 2 AAs per I-coil quartet used in 2005 experiments

VALEN MODELING SHOWS THAT SYSTEM DELAY MUST BE MINIMIZED FOR STABILIZATION NEAR THE IDEAL WALL LIMIT

🔸 GENERAL ATOMICS

jackson, MHD w/s05

LOWER SYSTEM LATENCY IN 2006 WILL ALLOW OPERATION NEAR THE IDEAL WALL LIMIT

📌 GENERAL ATOMICS

A VARIETY OF I-COIL CIRCUIT CONFIGURATIONS ARE POSSIBLE TO OPTIMALLY MATCH WITH SYSTEM LATENCY

GENERAL ATOMICS

AUDIO AMPLIFIERS CAN BE CONNECTED TO I-COILS IN A VARIETY OF CONFIGURATIONS (QUARTET IS TYPICAL)

jackson, APS05

HIGH qmin DISCHARGES ARE A SUITABLE TARGET FOR EVALUATING THE AUDIO AMP PROTOTYPE SYSTEM

jackson, MHD05

HIGH SPEED AUDIO AMPLIFIERS (AAs) CAN HELP STABILIZE RWMs

SLOW RWM FEEDBACK (SPA PWR SUPPLIES=>Icoils) REQUIRES LARGER CURRENT FOR STABILIZATION THAN AAs=>Icoils

WITHOUT FEEDBACK, n=3 BRAKING AND ELMs TOGETHER CAN REDUCE ROTATION TRIGGERING AN RWM

🐳 GENERAL ATOMICS

Two Independent Power Supply Combination is Effective and Efficient for Improving n=1 RWM Stabilization

SIMULTANEOUS FEEDBACK (fast I-coil and slow C-coil) HAS SUCCESSFULLY STABILIZED RWMs

- I-coil uses voltage feedback (V_{I-coil} = 26 V_{PCS Cmd})
- PCS: G_p, G_{deriv} = 16,144
- PCS: τ_p, τ_{deriv} = 10,50 μs
- C-coil uses current feedback and a programmed offset (I_{C-coil} = 500 V_{PCS Cmd})
- PCS: G_p = 1

- Fast system responds to ELMs and other n=1 activity
- Slow system provides
 - preprogrammed n=1 field

GENERAL ATOMICS

- n=1 dynamic error field correction
- n=3 braking

FUTURE WORK

- Counter beam (2006) will allow experiments with low rotation in an ITER-like scenario
 - Low rotation reproducible target discharges (2002-2005) have been difficult to obtain with high momentum CO injected beams
- Audio Amplifier system upgrade to 24 units (2006) will allow higher current and more flexibility
 - 1200A maximum current (I-coil quartets)
 - Individual I-coil control for n=2 RWM stabilization and smart shell algorithms
- Plasma control system (PCS) upgrade will reduce latency (51 μs) and better match PCS response to AA bandwidth and external circuit R/L
 - Other experiments such as tearing mode control (up to 50 kHz) and TAE excitation are being considered

SUMMARY

- Modeling predicts high speed actuators driving I-coils will allow operation near the ideal wall β limit without rotational stabilization if feedback system latency is sufficiently low (< 65 μs)
- A prototype wide bandwidth audio amplifier system driving I-coil quartets has been used for feedback stabilization of RWMs
 - Imax = 700 A (with step-down transformers)
 - System latency ~ 160 μ s
- A combination of C-coil (slow feedback) and I-coil (fast feedback) has demonstrated n=1 feedback stabilization and operation above the no wall limit for up to 2.4 sec in high q_{min} discharges, β_n^{max}~ 4

