Characteristics of H-mode Pedestals in Improved Confinement Regimes in DIII-D

R.J. Groebner, A.W. Leonard, T.C. Luce, C.M. Greenfield, G.L. Jackson, T.H. Osborne, D.M. Thomas, M.R. Wade, M.E. Fenstermacher

Presented at the 47th APS-DPP Meeting Denver, Colorado

October 24-28, 2005

Abstract

Characteristics of H-mode Pedestals in Improved Confinement Regimes.

Jackson, T.H. Osborne, D.M. Thomas, M.R. Wade, *GA*, M.E. Fenstermacher, *LLNL* – The characteristics of H-mode pedestals in improved confinement regimes are studied and compared to conventional ELMing H-mode discharges in DIII-D. These improved regimes include VH-mode, hybrid H-mode and Advanced Tokamak (AT) discharges. Initial results of this study show that across all regimes, 1) confinement improves as the pedestal electron beta-poloidal increases ; 2) the global beta-poloidal of the plasma is linearly related to the pedestal electron beta-poloidal; and 3) the scale length for the electron pedestal pressure profile is of similar magnitude. Thus, the initial results of this study show that there is a continuum of pedestal parameters with various confinement regimes falling within this continuum. In other words, the improved confinement in these regimes does not result from a dramatic change in pedestal characteristics.

*Work supported by U.S. DOE under DE-FC02-04ER54698 and W-7405-ENG-48.0

Motivation

- Osborne showed that H-ITER93H increased with p_e(ped) in standard H-mode discharges in original ITER shape
- What happens in improved DIII-D performance regimes
 - VH-mode, Hybrid, Advanced Tok and QH-mode (ELM-free)
- How does global performance correlate with pedestal?
 - Core: Stored energy, H-factor, beta
 - Pedestal: Stored energy, pressure and beta
- Are there differences in pedestal structure between confinement modes?
 - Pressure scale length, η_e , barrier widths

Outline

- Confinement enhancement factors as functions of pedestal pressure
 - Mixed story: for a given regime, there is a trend for H to be independent of pedestal pressure
 - However, for a fixed pedestal pressure, different H factors are observed for different confinement regimes
- Global stored energy and beta as functions of pedestal energy and beta
 - General trend of global stored energy, β_{pol} and β_{N} to increase with pedestal counterparts
 - Correlation not perfect

Pedestal shape parameters

- Pressure scale length, η_{e} , barrier widths examined
- No clear differences between various confinement modes

H-ITER93H Increases with Electron Pedestal Pressure in Original ITER Shape

(Osborne et al, Proc. 24th EPS meeting, Vol. 21A, (Euro. Phys. Soc., 1997) p. 1101)

- Trend for H-ITER93H to increase with p_e(ped)
- Strong correlation between global confinement and pedestal height
- There is some rollover at higher p_e(ped), not shown

Confinement Enhancement

What Can We Learn by Studying H-factor?

- An H-factor shows observed confinement time divided by prediction from a scaling relationship
- If the scaling relationship correctly captures the scaling of a data set, then H-factor should be a constant as a function of a pedestal parameter
- If H-factor changes as function of a pedestal parameter, the scaling relationship is not capturing some physics in the observed confinement
- We examine several H-factors as functions of p_e(ped)
 - For a given regime, there is tendency for H to be ~ constant as pedestal pressure is changed
 - However, for a fixed pedestal pressure, different H factors are observed for different regimes

Will Examine H-factors from 3 Confinement Scalings

 ITER93E is a thermal ELMy scaling from D.P. Schissel, et al., 20th EPS Conf. on Controlled Fusion and Plasma Physics, Vol. 17C (1993) p. 103.

$\tau_{th}^{ITER93E} = 0.022I^{0.76}B^{0.15}P^{-0.7}n_{19}^{0.42}M^{0.30}R^{2.30}a^{-0.30}\kappa^{1.05}$

 ITER89P is a scaling for total energy in L-mode from P.N. Yushmanov, et al, Nuclear Fusion, Vol. 30, 1999 (1990).

$\tau_{th}^{ITER89P} = 0.048 I^{0.85} B^{0.2} P^{-0.5} n_{20}^{0.1} M^{0.5} R^{1.2} a^{0.30} \kappa^{0.5}$

 EGB is an ELMy thermal scaling with electrostatic and gyrobohm constraints from C.C.Petty et el., Fusion Sci. Technol., vol 43, 1 (2003)

$$\tau_{th}^{EGB} = 0.028 I^{0.83} B^{0.07} P^{-0.55} n_{19}^{0.49} M^{0.14} R^{1.81} a^{0.30} \kappa^{0.75}$$

H-EGB Is Partially Correlated with Pedestal Height

- H-EGB is confinement enhancement factor from an electrostatic, gyrobohm scaling
 - Petty et al., Phys.
 Plasmas <u>11</u>, 2514 (2004)
- H-EGB is ~ constant versus p_e(ped) for Hmode, Hybrid and AT regimes
- There is also a trend for H-EGB to increase at a fixed p_e(ped) as the regime is changed
- QH-mode is different

H-ITER93E and H89P Partially Correlated with Pedestal Height

rjg / aps05

Stored Energy / Beta

Global Stored Energy and Beta Tend to Increase with Pedestal Energy and Beta

- Overall, there is roughly a linear trend for global stored energy, β_N and β_{pol} to increase with their pedestal counterparts
 - This can be interpreted as evidence for core performance depending on pedestal parameters
- However, within a regime, particularly H-mode and Hybrid, global energy and beta parameters tend to be saturate despite increasing pedestal parameters
 - Is this due to core MHD or other internal phenomena?
- QH-modes are different show increasing global energy and beta for fixed pedestal energy and beta
 - Data are from a power scan, and core barriers form as power is increased, but pedestal is not changing much
 - Could be interpreted as evidence that ITB profiles are not "stiff"

Global Stored Energy Is Correlated with Pedestal Stored Energy

- This is clearest evidence for pedestal height affecting the core
- Wped is stored energy in pedestal
- Obtained from 3/2 * pe(ped) *volume
 - Ion pressure assumed equal to electron pressure
- Over entire data set, there is roughly linear dependence between W_{MHD} and W_{ped}
- However, some regimes show saturation of W_{MHD} with W_{ped}

Global β_N Tends to Increase with Pedestal $\beta_{N,e}$

- Trend for global β_N to increase with pedestal $\beta_{N,e}$
- QH-mode shows global β_N increasing at constant pedestal $\beta_{N,e}$
 - Data from a power scan

Global β_{pol} Tends to Increase with Pedestal $\beta_{pol,e}$

Pedestal Shape

Examine Pedestal Structure Parameters

- Are there differences in the pedestal structure between the different regimes?
 - If so, that would be evidence that a regime depends on something special about the pedestal
- How different are pedestal structure parameters?
 - For instance, does pedestal "width" vary with regime
- An initial survey of pedestal structure parameters finds no obvious differences between regimes
 - The structure parameters include, electron pressure scale length, η_e and relation between n_e and T_e widths
- Pedestal structure shows a continuum across regimes

For All Regimes, Pressure Scale Lengths are in Range ~ 0.8 - 1.6 cm

- Pedestal p_e is roughly proportional to max pressure gradient
 - This implies roughly constant pressure scale length for all regimes where L_{pe} = p_e / ∇p_e
- L_{pe} in range 0.8 1.6 cm at outer midplane
- Note that VH-mode does not look different from other regimes

At Steepest Part of T_e pedestal, η_e Is ~ 1 - 3

 Electron density and temperature scale lengths fall in small range

$$- L_{ne} = n_e / \nabla n_e$$
$$- L_{Te} = T_e / \nabla T_e$$

The ratio of these scale lengths is $\eta_{\textbf{e}}$ where

 $\eta_e = L_{ne} / L_{Te}$

- Most values of η_e are in range 1-3
- No regime stands out
- Some data at high η_e are few ms after ELMs

Widths defined from foot of T_e barrier

- Convenient way to define density width is to reference it to foot of T_e barrier
- Then, △_{ne} and △_{Te} give measure of which barrier extends further into plasma
- This is not how newid is defined in Tanhfit!!!

T_e and n_e Barrier Widths Are Comparable

- For all data in the study, most probable ratio of widths is one.
- That implies that both barriers tend to penetrate about same distance into plasma
- Similar to results from ELMing H-modes

Widths and Scale Lengths are Not Necessarily Identical

- Data shown for T_e (red) and n_e profiles (blue) with nearly identical widths
 - Width measured from foot of T_e profile
- Profiles are normalized to be equal at T_e symmetry point

Point of max gradient

- However, normalized gradients differ by factor of about two
 - Due to fact that full width of the density step extends into SOL

Conclusions - 1

- Standard core confinement scalings capture variation of confinement time as pedestal pressure is varied
 - i.e., H is roughly constant as pedestal pressure varies
- However, there are improvements in confinement which cannot be attributed to pedestal
 - Most likely, shape, core MHD, pressure profiles, etc are important
- There is a general trend for global energy and beta to increase with pedestal energy or beta
 - This is best evidence for dependence of core performance on pedestal parameters
 - However, within given regimes, this trend can be violated
 - Standard H-mode and hybrids show global beta being constant with increasing pedestal beta
 - QH-mode shows global beta increasing at constant pedestal beta

Conclusions - 2

- There are no clear differences in pedestal shape parameters between confinement modes
 - Thus, the various regimes do not appear to depend on special pedestal features
 - There is a continuum in pedestal parameters, particularly pressure and pressure gradient, between the regimes

• There is a lot more to be done

- In particular, ion pedestal parameters need to be examined

H_{89} vs pedestal electron β_{pol}

- For a given regime, H89P is mostly flat in β pol,e(ped)
- Between regimes, there is tendency for H to vary with $\beta_{\text{pol},e}$ (ped)
- Highest H89P observed near highest β_{pol,e}(ped)

H_{89} vs pedestal electron β_N

- For a given regime, H89P is mostly flat in β
 _{N,e}(ped)
- Between regimes, there is tendency for H to vary with $\beta_{N,e}$ (ped)
- Highest H89P observed near highest β_{N,e}(ped)

Summary: Correlation of H-factor and Pedestal Electron Pressure/Beta

- For H-mode, Hybrid and AT data in this dataset, all H factors are relatively independent of either pedestal electron pressure or beta
 - Thus, these confinement scalings capture variation of an energy confinement as pedestal is changed
- However, for fixed pedestal electron pressure or beta, the H factors can increase as we move to better confinement regimes
 - Thus, these confinement scalings do not capture all differences between the regimes. Other physics must be invoked.
- Highest H-factors observed in transient phase of VH-mode
- H-ITER93E and H-EGB do not properly capture confinement scaling in QH-mode

