Advanced Tokamak Development in DIII–D

C.M. Greenfield

Presented at the 47th Annual Meeting of the APS Division of Plasma Physics

Denver, Colorado October 24-28, 2005

DIII–D Advanced Tokamak experiments have demonstrated the performance required for the ITER Q=5 steady-state scenario

- Experiments in the high bootstrap negative central shear regime emphasize stationary, in-principle steady-state, operation [Murakami UI2.05, Friday morning]
 - With $\beta_{\rm N} \approx 3.5$:
 - $f_{NI} \approx 100\%$ for 0.5 1.0 s (inductive current \Rightarrow 0 both globally and locally)
 - $f_{NI} \leq 95\%$ for 2 s, limited by hardware pulse length
- Internal transport barriers (ITB) with broad current profiles can maintain very high performance under nonstationary conditions [Garofalo UI2.03, Friday morning]

 $\beta_{\rm N} \approx 4$ for 2 s with elevated q profile

Progress in tool development is discussed elsewhere

Where we were:

100% noninductive current achieved, but not fully relaxed

- Advanced tokamak goals call for:
 - For steady-state:
 j_{inductive}(ρ,t) = 0
 - For fusion performance and high bootstrap current: high β
- Achieved: Net f_{NI} ≈100% with β_N ≈ 3.5 and β_T ≈ 3.6%, but...
 - Locally non-zero inductive current
 - Neutral beam current overdrive near axis
 - "Reduced" confinement ($H_{89} ≤ 1.9$)
 - Current profile not stationary

Development of control techniques results in improved AT performance

- Improved error field and RWM control
 - Both internal and external coils
- Early β feedback control (during current ramp)
 - ⇒Finer control of target q profile
 - Best performance found with slightly negative central shear

- ⇒Improved stability and confinement
 - Reliable operation at $\beta_{\rm N} \approx 3.5$
 - H₈₉ ≈ 2.3-2.4
 Ability to modify confinement allows some control over central current

Nearly full noninductive, stationary discharge obtained, limited only by gyrotron pulse length

100% noninductive condition achieved both globally and locally across the plasma

- Parameters consistent with ITER Q = 5 steady-state scenarios
- Duration of the fully noninductive condition limited by pressure profile evolution, leading to MHD instability after about 0.7 s

Integrated modeling supports both DIII–D AT program and ITER scenario development

- Integrated modeling continues to be an important part of AT research on DIII–D
 - Design experiments
 - Interpret results
 - Develop physics models for application to ITER and beyond
- Modeling with GLF23 indicates that in-principle steady state operation is possible with hardware improvements now being made on DIII–D
 - ECCD and fast wave
 - Double-null pumped divertor
- Same modeling capability is being applied to ITER
 - Credible AT scenarios exist

$$P_{EC} = 4.5 \text{ MW} \qquad I_{P} = 1.19 \text{ MW}$$
$$P_{NB} = 6.8 \text{ MW} \qquad B_{T} = 1.86 \text{ T}$$
$$P_{FW} = 3.5 \text{ MW} \qquad \beta_{T} = 4.1\%$$
$$\beta_{N} = 3.8$$

Non-stationary discharges can reach higher levels of fusion performance

- β_N ≈ 4 obtained and sustained for 2 s with
 - Elevated q
 - Broad current profiles
 - Internal transport barriers
- Challenge: Can these conditions be maintained under stationary conditions?
 - Even if not possible with tool set in DIII–D, this research may identify techniques for application in ITER

$\beta_N \approx 4$ maintained for 2 s with elevated q profile

- $\beta_{\rm N} > 6\ell_{\rm i}$ for ~2 s
 - Relies on wall stabilization of the n=1 external kink mode (no-wall stability limit $\sim 4\ell_i$)
- High energy confinement (H₈₉ > 2.5)
 ⇒ high fusion gain factor G
- High q_{\min} \Rightarrow high bootstrap fraction f_{BS}

Simultaneous ramping of I_P and B_T and early neutral beam heating create broad current profiles

• Off-axis ECCD helps broaden current profile

- Broadens pressure profile
- Reduces MHD activity
- High performance phase generally limited by current profile evolution
 - NTM occurs as q_{min} evolves

High β is achieved in the presence of an internal transport barrier

- TRANSP analysis indicates presence of ITB in the ion thermal channel
 - Contrasts with previous experience: Low β limits usually associated with peaked profiles in ITB discharges
- High β_N limit to n=1 kink mode calculated with ideal DIII-D wall for experimental pressure profile
 - DCON ideal MHD stability code predicts $\beta_N^{ideal-wall} > 6$ (~11 ℓ_i)
 - Enabled by broad current profile and wall stabilization

DIII-D can develop the scientific basis for ITER steady-state Advanced Tokamak studies

 Facilitated by long-pulse gyrotrons and density control in strongly shaped plasmas

Also coming: counter- NBI and fast wave heating and current drive

AT research in DIII–D continues to build a scientific basis for high performance steady-state operation

• Performance achieved:

- Fully noninductive operation with $\beta_{\rm N} \approx 3.5$
 - $f_{\rm NI} \approx 100\%$ for 0.5 1.0 s (fully relaxed)
 - $f_{\rm NI} \leq 95\%$ for up to $1 \times \tau_{\rm R}$
- Maintained $\beta_{\rm N} \approx$ 4 for 2 s with elevated q profile and internal transport barrier
- Experimental efforts supported by integrated modeling to
 - Plan and interpret DIII-D experiments
 - Build physics models to design AT scenarios for ITER and beyond
- New tools will allow continued progress
 - Pumped double-null divertor will improve access to high β and quantify benefits of double-null operation
 - Increased power and pulse length for current profile control

Advanced scenario development at the 2005 APS/DPP conference

- Murakami UI2.05: Progress Toward Fully Noninductive, High Beta Conditions in DIII-D
- Garofalo UI2.03: Access to Sustained High-Beta With Internal Transport Barrier and Negative Central Shear in DIII-D
- Tool development supporting current and future AT research
 - DIII–D facility enhancements: Tooker B03.15*, Boivin CP1.02
 - Current profile control: Ferron B03.03* (next!)
 - Active feedback control of RWM: Okabayashi B03.11*, Jackson CP1.19, Strait CP1.22
 - Fast wave heating and current drive: Pinsker QP1.06
 - ...and others in the B03 oral session and CP1 and QP1 poster sessions

This session