The Connection Between Upwind Dissipation, Entropy Production, Velocity-Space Resolution and Steady-States of Turbulence in GYRO Simulations,* J. Candy, GA – The connection between dissipation and steady states of turbulence in gyrokinetic simulations has been discussed by Krommes [1] who argued that nondissipative simulations cannot achieve a true turbulent steady state. The issue was revisited in the context of Eulerian simulations by Watanabe [2], providing a clear and precise confirmation of Krommes' analysis.

In this presentation we show how the upwind advection schemes used in GYRO [3] provide the dissipation required for the achievement of steady states of turbulence. These steady states are grid-converged not only with respect to transport coefficients but also with respect to entropy. We put to rest the commonplace but ill-founded notions that Eulerian simulations (a) require velocity-space dissipation and (b) miss important velocity-space structure.


*Work supported by US DOE under DE-FG03-95ER54309.