Comparative study of C I line profiles resulting from methane puffing in the DIII-D divertor with those from surface sputtering

by N.H. Brooks, R.C. Isler, W.P. West, C.P.C. Wong, A.G. Mclean, and D. L. Rudakov

poster presented at the APS Conference in Denver, Colorado

September 19-20, 2005

- Both passive and, more recently, active DiMES samples have been exposed to divertor plasma at the outer strike point (OSP)
 - In-situ divertor behavior of carbon flakes, gaseous methane, and amorphous C-H / -D films has been imaged, and recorded spectroscopically
- Molecular spectroscopy (CH and C₂ bands)
 - formation of an a:C-H film observed during CH₄ puffing
 - transformation of film seen in shots w/o puffing
- Atomic spectroscopy (C I line profile)
 - decomposition of asymmetric profile sheds light on sputtering mechanisms

Spectrometer views of lower single-null magnetic configuration in divertor-sample-exposure experiments

- Typically, OSP swept onto the DiMES sample and held stationary for several seconds
- High-resolution, multichord divertor spectrometer (MDS) equipped with poloidal fan of viewchords
- Medium-resolution spectrometer
 (Reticon CER) has single vertical viewchord
- Dα, Dβ, C III, and He II monitored with spectral filter / photomultiplier combinations over similar fan of viewchords

Toroidal Geometry of MDS View Chords

Summary of initial findings from porous plug experiment

- a:C-H film forms on surface of porous plug during CH₄ methane injection
- energetic D+ flux causes rapid isotopic replacement of H by D
- Total C° influx is sum of direct and indirect components: CH₄ gas puff and re-erosion of a: C-H film
- Chemical sputtering dominates erosion of bare graphite tiles at outer strike point in low-power, attached L-mode plasmas, based on C I line shape analysis.
 - Contradictory conclusion reached by U of T group (CP1.0014), based on CII-normalized, CD-photon-yield method

Puffing methane gas through a porous plug locally changes the balance of erosion and redeposition

Pre-Exposure

Post-Exposure

Top View

Side View

- 1,004 holes of 0.25 dia mm diameter in ATJ graphite plate
- Flow ~4 sccm, to approximate in-situ chemical sputtering rate
- Gas reservoir, valve, and ptransducers all contained within graphite plug
- Brownish film indicates net deposition locally over plug
- Significantly greater deposition downstream on PFZ side

Dust DiMES Summary

About 25 mg of 5 – 10 μm size carbon dust was introduced in DIII–D divertor

When OSP was swept over DiMES, about 1-2% of the total carbon content of the dust penetrated into the core raising core carbon content by about a factor of 2

see Wong CP1.00013 - this session

Dust Holder and PPI DiMES Head had Similar Deposition!

Dust DiMES

Dust tracks

PPI

see Wong CP1.00013 - this session

First Tests of ITER-relevant Diagnostic Mirrors in DIII-D

Presented orally this morning by Rudakov in B03.0007

- A set of two mirrors was exposed in a piggyback mode over two days to 72 plasma discharges with varying parameters for a total of 435 plasma seconds
- DIMES was in the outer SOL in some shots and in private flux zone (PFZ) in others
- Significant semi-transparent deposits appeared on the mirror closest to the leading edge of the floor tile

Before exposure

After exposure

Conclusions from molecular spectroscopy

- CH₄ puffing causes net deposition locally on face of porous plug
- Determination of CD photon yield from gas injection complicated by secondary source of sputtered HCs
- Energetic D⁺ flux causes rapid isotopic exchange and hardening of film (that is, a reduced chemical sputtering rate)
- In-situ film formation provides unique capability to study film evolution under strike point conditions

$A^2\Delta$ – ${\rm X}^2\Sigma$ band of CH/CD easily identified in CER view upstream of DiMES

- CH dominates early and late in shot, when CH₄ cloud can expand unimpeded toward toroidally displaced viewchord
- Only CD visible during dwell of OSP on DiMES, due to plasma plugging of neutral efflux from holes
- In contrast, CH dominates in MDS view of DiMES surface during dwell of OSP
- Plasma flow entrains ionic fragments of CH₄, carrying HC fragments back to DiMES surface

Bright C₂ bands are visible in view of the porous plug

- During shot with puff, C II ion and C₂ band intensities mimic temporal history of CH₄ injection
- During shot w/o puff, C II and C₂ decay continuously during dwell on OSP
- Spectra integrated over 1-sec intervals give clearer picture
- Chemical erosion rate during OFF shot decays to level approaching that seen upstream of puff location

165-05/jy

D+ flux to outer strike point promotes rapid isotopic exchange of D for H in film

- D+ flow rate onto DiMES is an order-of-magnitude larger than CH⁴ injection rate (1.4e18 /s).
- CH band dominates during shot with puffing; replaced by weak CD band on shot without puffing.
- CD band intensity too weak to deduce time history in no-puff shot
- Isotopic exchange and degassing of a:C-H film occur in no-puff shots
- How much of C I and C II light comes directly from breakup of CH₄? How much indirectly, from sputtering of a:C–H film ?

In the puff, all the C I flux can be ascribed to HC breakup

- The measured CH and C₂ fluxes are sufficient to explain the C I influx, using the expression $\Gamma_{mol} = 52 \times \Gamma_{C_2} + (\Gamma_{CD} - 8 \times \Gamma_{C_2})$
 - The 1st term accounts for C_2D_y and C_3D_y ; the 2nd for CH_4

 The relative sizes of the direct and indirect HC sources (puffed CH4 versus eroded HCs) can not be reliably determined from this data

Least square fits to synthetic spectra of C₂ and CH bands yield T_{rot} and T_{kin}

Overview of C I Profile Analysis

- Analysis of C I spectral line shapes gives an independent way to distinguish carbon release mechanisms
 - Asymmetry and λ -shift observed in C I 9095 line
 - Effective C I temperatures cluster in ranges 0.8-1.2 and 5-8 eV, according to which sputtering mechanism dominates
 - Physical sputtering causes λ –shift which increases with mass and energy of incident ions
 - Both chemical sputtering and recombination give rise to symmetric line
- Relative importance of physical and chemical sputtering supported by flux measurements of C I, C₂ and CD in the DIII–D divertor

Physical Sputtering Broadens C I Line Profile Preferentially on Blue Side of Rest Wavelength

With Physical Sputtering, Hemispheric Velocity Distributions Give Rise to Asymmetric Spectral Profiles

Details of Profile Analysis

- Maximum entropy technique used to deconvolve source profile from measured one
- Source profile fit with analytically constrained, asymmetric and symmetric components by a non-linear, least squares method

- Asymmetric part represented by a modified Thompson velocity distribution mapped to
$$\lambda$$
 space $f(E)dE = \frac{E}{\left(E + U_0\right)^3} h(\theta)G(E)dE$

where $h(\theta) = \cos^{\alpha}(\theta - \delta)$

- Symmetric part described by single (or double) Gaussian

• In absence of λ fiducial from argon lamp, centroid of profile from detached, inner strike point used to locate λ_0

Conclusions from C I atomic spectroscopy

- T_{eff} from C I profiles are ordered by size according to carbon source: breakup of HCs < sublimation of dust < physical sputtering
- Puffing experiment contradicts T_{eff} predictions from modeling of CH₄ breakup dynamics
- Consistent with empirical finding by Isler of low T_{eff} when C influx dominated by chemical sputtering
- Is C I emission in porous plug experiment dominated by direct source (CH₄ breakup), or indirect source (sputtering of a:C-H film) ?

In puff, C I line profile is well-fit by Gaussian. $T_{Dop} \sim 0.6 \text{ eV}$

Gaussian fits source profile, despite Frank-Condon creation mechanism of C atoms from CD, and C₂

 — Source profile obtained by deconvolution of instrumental function from measured data

- Measured T_{Dop} is much lower than 3-4 eV suggested by modeling of fragmentation sequence for CH₄
 - Bumps in T_{Dop} trace during dwell caused by strike point movement

Normalized profile of CI upstream of porous plug is broadened asymmetrically w.r.t. profile on plug

- CH₄ puff gives rise to symmetric profile only slightly broader than instrumental, T_{C I} ~ 0.55 eV
- Graphite sputtering produces asymmetric broadening on blue side of profile
- Graphite flakes produce symmetric profile (not shown) with T_{C I} ~ 1 eV

Upstream of DiMES, chemical sputtering makes dominant contribution to atomic C flux at OSP

- T_i of Gaussian taken from C I profile through CH₄ puff, instead of being left as independent fit parameter
- Shoulder on Thompson profile due to indirectly observed light; its contribution is mirrored about λ_0 of each Zeeman component
- Best fit obtained with effective tile reflectivity of 15% and incident ion energy of 150 eV

Least squares fitting of the deconvoluted C I source profile

- Best fit obtained with $T_{Dop} = 0.9 \text{ eV}$, $E_{impact} = 150 \text{ eV}$, $R_{eff} = 20\%$
 - 80% of C flux due to chemical sputtering, based on integrated areas under Thermal and Thompson profiles

Summary of initial findings from porous plug experiment

- a:C-H film forms on surface of porous plug during CH₄ methane injection
- energetic D+ flux causes rapid isotopic replacement of H by D
- Total C° influx is sum of direct and indirect components: CH₄ gas puff and re-erosion of a: C-H film
- Chemical sputtering dominates erosion of bare graphite tiles at outer strike point in low-power, attached L-mode plasmas, based on C I line shape analysis.
 - Contradictory conclusion reached by U of T group (CP1.0014), based on CII-normalized, CD-photon-yield method

