Core Barrier Formation Near Integer q Surfaces in DIII-D

Presented by M. E. Austin

Presented at the 47th APS-DPP Meeting Denver, Colorado

October 24-28, 2005

In collaboration with

K.H. Burrell¹, R.E. Waltz¹, K.W. Gentle², P. Gohil¹, C.M. Greenfield¹, R.J. Groebner¹, W.W. Heidbrink³, Y. Luo³, J.E. Kinsey⁴, M.A. Makowski⁵, G.R. McKee⁶, R. Nazikian⁷, C.C. Petty¹, R. Prater¹, T.L. Rhodes⁸, M.W. Shafer⁶, M.A. Van Zeeland⁹

¹General Atomics
²University of Texas Austin
³University of California Irvine
⁴Lehigh University
⁵Lawrence Livermore National Laboratory
⁶University of Wisconsin Madison
⁷Princeton Plasma Physics Laboratory
⁸University of California Los Angeles
⁹ORISE

Motivation

- In tokamak devices it has been found that low order rational q surfaces play a key role in the formation of internal transport barriers (ITBs)
- Most often seen in negative central shear discharges at low power as q_{min} reaches integer value
- Proposed mechanisms for barrier formation include
 - MHD events that modify ExB flow shear
 - Inherently low transport adjacent to low m/n surfaces
- Detailed measurements of transport, turbulent fluctuation levels, and E_r are available — we can solve this problem

Summary of Results

- Confinement improvement precedes the time of crossing an integer q surface and is symmetric in an interval around that event; core tearing modes are ruled out as a triggering mechanism
- Electron and ion transport reduction is transient in the neighborhood of integer q values at low power. At higher power a core ion transport barrier generally forms near the time of q_{min}=2
- Low and intermediate k turbulent fluctuations are seen to drop around integer q; intermediate k turbulence remains at reduced levels during the ITB phase
- T_e gradient measurements are in agreement with preliminary results from the GYRO code that implicate time averaged zonal flow structures tied to rational q surfaces as being part of the triggering process.

Core barrier triggering studied near marginal conditions

Changes in transport seen in DIII-D as q_{min} traverses integer values

Integer q_{\min} time is determined accurately from Alfvén cascades

- RSAE Reverse shear Alfvén eigenmodes (cascades) are visible in FIR scattering data
- q_{min} vs time obtained from MSE-EFITs and cascades

R. Nazikian, et al, Proc. 20th IAEA Fusion Energy Conf. (Vilamoura, Portugal, 2004)

Transport improvement precedes appearance of rational surface

- •Lower NB power (2.5 MW) produces transient confinement improvement
- •Temperature rise starts 10-12 ms before q_{min}=2
- •*T*_i ,*T*_e rise continues for a similar interval afterwards

Reconnection and island formation not seen as trigger

• Transport changes preceding integer q_{min} is primary evidence

- Generally no modes detected on magnetics near q_{min}=integer time
- Modes appear later as beta increases

ΔTe change shows definite barrier signature

- Δ Te profiles referenced to 14 ms before q_{min} =2 time
- Dipole change in $T_{\rm e}$ oberved about $q_{\rm min}$ radius

$T_{\rm e}$ gradient steepens before and after $q_{\rm min}$ =2, dips at $q_{\rm min}$ =2

- *T*_e gradients derived from adjacent ECE channels
- Changes shown are near and just inside radius of q_{\min} , rho ~ 0.45
- Further evidence of transport changes preceding q_{min}=2

$T_{\rm e}$ gradient changes are similar for 5 MW case

- Interval for temperature rise preceding q_{min} =2 is often shorter, as small as 5 ms
- T_e gradient measurements underscore the locally transient nature of transport changes

Confinement changes propagate in with q=2 surface

• Structures in ∇T_e follow q=2 in time

Transport physics near low order rational q =m/n surfaces key

- DIII-D has transient Te-gradient, poloidal velocity, and high-n turbulence strongest near q_min = 2/1 where shear is very small
- Given smooth equilibrium profiles, the time and flux-surface averaged (equilibrium) profiles produced in GYRO simulations have large profile corrugations in the Te(r),Ti(r),n(r),phi(r) gradients profiles tied to low order rational surfaces
- These corrugations correspond to the various components of the time and flux surfaces averaged n=0 zonal flows on top of to the given smooth equilibrium
- GYRO is a global gyrokinetic code containing the "full physics" required to realistically and accurately simulate all steady state transport flows from given smooth equilibrium experimental profiles:

-ITG mode physics -trapped & passing electrons -collisions -finite-beta -real geometry -equilibrium ExB & u_par shear -finite rho-star

GYRO runs show corrugations in grad_Te/Te at low order rational q values near a qmin

- The -grad(Te)/Te corrugations near vanishing shear, i.e. at q_min, are larger than for monotonic q profiles
- This run: time average after nonlinear saturation from a given snap shot q_min = 1.98 profile

• The well-justified assumption is that the GYRO corrugations will follow the inner and outer q=2/1 surfaces as they slowly drift inward and outward

GYRO corrugations in radius should track the experimental time traces

Corrugations related to density of rational surfaces

- Many devices have seen transport changes correlated with low order rational q values – tokamaks, stellarators
- The flattened Te-corrugations and enhanced ExB shear rates (not shown) result from low density of rational surfaces and results in slightly reduced flow at the low order surfaces
- Electrostatic GYRO reruns show nearly same level of corrugationshence "islands not important"

Profile corrugations, zonal flows, and tranport at low order rational q

- Zonal flows are low (near zero) frequency, poloidally and toroidally symetric electrostatic potential structures which vary only in radius on a small scale. They have time averages which are distinguished from the "smooth" background equilibrium only by their small scale
 - n=0 zonal flows are nonlinearly driven by high-n microturbulence modes
 - The ExB shearing in the n=0 zonal flows nonlinearly saturate and regulate the high-n modes
- The transport flow carried by the high-n micro-modes is localized about many m/n surfaces
- The divergence of the transport flow driving the zonal flows is strongly corrugated where the density of rational q surfaces is low resulting in a time averaging flattening of the Te (and Ti,n,phi) profiles at the low-order surfaces

χ_i drops at q_{min} =2 and remains low

- TRANSP runs confirm improvement in ion confinement
- $\chi_{\rm e}$ shows slow improvement, proportional to current soak-in, but no step changes
- Short time scale transport changes not expected to show up in TRANSP analysis

Decrease in density fluctuations coincides with local drop in χ_e near integer q_{min}

• Dip in fluctuations is localized to q_{\min} radius

Localized jump in poloidal velocity occurs at q_{min} =2 trigger event

- Observed radial variation of velocity represents very large shear
- •BES measurement near R_{qmin}

Drop in intermediate-k fluctuations starts at time of q_{min} =2

- Both transient and long term changes are seen in intermediate k data
- The persistent reduction is consistent with steady state core barrier

Core ion confinement follows standard ExB shear suppression of turbulence

- Before transition, shearing rate is insufficient for ITG suppression
- $\omega_{\mbox{\tiny ExB}} \thicksim \gamma_{\mbox{\tiny max}}$ to suppress ITG
- Event near q_{min}=2 pushes plasma into improved core confinement regime

Conclusions

• Confinement improvement precedes the time of crossing an integer q surface and is symmetric in an interval around that event; core tearing modes are ruled out as a triggering mechanism

• Electron and ion transport reduction is transient in the neighborhood of integer q values at low power. At higher power a core ion transport barrier generally forms near the time of q_{\min} =2

• Low and intermediate k turbulent fluctuations are seen to drop around integer q; intermediate k turbulence remains at reduced levels during the ITB phase

• T_e gradient measurements are in agreement with preliminary results from the GYRO code that implicate time averaged zonal flow structures tied to rational q surfaces as being part of the triggering process.

