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MOTIVATION

 H-mode and ITB formation of modern tokamak make it necessary to
analyze the pressure and current profiles and to analyze and control the
instabilities associated with them

 Self-consistent integration of MHD stability models in transport analysis
is essential for simulation and development of AT scenarios for DIII-D
and new tokamak devices such as EAST

 High accuracy equilibrium calculations are required for stability studies

---- Use of inverse solver can provide direct input to stability codes and
avoid inaccuracy associated with  the interpolation  of flux
coordinates and mapping
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OUTLINE

 The inverse equilibrium code TOQ has been  integrated into
ONETWO

  A non-resonant magnetic damping model due to error magnetic
field has been implemented into ONETWO to model the
observed plasma slowing down in DIII-D RWM discharges

 The ONETWO transport package is being applied to develop AT
scenarios for the EAST ( Experimental  Advanced
Superconducting Tokamak ) being constructed at ASIPP, Hefei
China.
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TOQ HAS BEEN INTEGRATED INTO ONETWO

 TOQ is a fixed boundary, equal-arc-
length, inverse equilibrium solver for
the Grad-Shafranov equation. Different
choices are available to parameterize
the current profiles in the Grad-
Shafranov equation

 It was originally written by B. Miller of
General Atomics(B. Miller et. al, NF,
p2101, 1987). The latest version TOQ4.1
is contributed by Dylan Brennan,and is
available at  http://fusion.gat.com/toq/

  We check the calculated geometric
parameters by TOQ against the direct
equilibrium solver in ONETWO. They
are in good agreement (right).
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TOQ BENCHMARKS WELL AGAINST THE EXISTING
DIRECT EQUILIBRIUM SOLVER IN ONETWO

 TOQ, as an independent code, is called by ONETWO to calculate the geometric
parameters of flux surface and other neoclassic transport related parameters at each
time point and  to present a series of output files for stability analysis. To
benchmark, a sample current evolution case for shot 111221 has been run from
t=3.7s using both TOQ and the direct solver.
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ONETWO HAS BEEN MODIFIED TO INCLUDE MAGNETIC DRAG
EFFECTS DUE TO NON-RESONANT ERROR FIELD

 The magnetic drag effects on plasma rotation are simulated in ONETWO

      ------ Toroidal rotation evolution equation
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THE RESONANCE DRAG EFFECT IS MODELED USING
THE INDUCTIVE MOTOR MODEL
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NON-RESONANT MAGNETIC DRAG

 The non-resonant magnetic drag from the (m,n) component of error field is
modeled as
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RESONANT MAGNETIC DRAG CAN QUALITATIVELY DESCRIBE
REDUCTION OF  PLASMA ROTATION IN RWM DISCHARGE

 ONETWO simulations of toroidal rotation using measured temperature and density data

 Magnetic drag + 3500 Neoclassic background
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NON-RESONANCE MAGNETIC DRAG EFFECTS
APPEAR TO BE MODEST

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

 

 

 

r/a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

 

 

 

r/a

ωφ (rad /s) with Non-
resonant Drag

Initial 1500ms

Exp 1555 ms

Simulated

ωφ (rad /s) with both Resonant and
Non-resonant Drag

Initial 1500ms

Exp 1555 ms

Simulated

Simulated w/o Drag
Simulated w/o Drag



                       10       Zhou et al APS 2004

EAST IS A SUPERCONDUCTOR TOKAMAK BEING
CONSTRUCTED IN HEFEI

 The missions of EAST ( Experimental Advanced Superconducting Tokamak )
include

       ----Demonstrate steady-state operation with full non-inductive current drive,
i.e. with external current drive and bootstrap current.

       ----Investigate advanced tokamak physics and demonstrate stationary high
plasma operation performance operation by strong plasma shaping, profile
control and divertor optimization.

   The EAST machine is under construction at ASIPP, Hefei, China. First
plasma is expected by late 2005.
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EAST PARAMETERS

Major radius R0  1.75-1.95 m

Minor radius a     0.4-0.5 m

Toroidal field B0  3.5(4) T

Plasma current Ip  1(1.5) MA

Elongation κx     1.6-2
Triangularity δx  0.4-0.8

Heating and current drive

      ICRF    1.5-3-6 MW

      LHCD  2-3.5-8 MW

      ECRH  0.2-1-1.5 MW

      NBI      0-4-8 MW
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EAST VACUUM CHAMBER
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PRE-ASSEMBLING OF EAST SUPERCONDUCTING
TOROIDAL FIELD COILS
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PRELIMINARY EAST SIMULATION USING ONETWO

 A double null plasma configuration with 1 MA fixed total current and NBI, ECH, and
fast wave heating and current drive is simulated using the GLF23 transport model until
Te, Ti, and ω reach steady state.

 Then the Faraday equation is solved to find the steady state current density,
J, with flat electric field profile.
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ELECTRON AND ION TEMPERATURE PROFILES
EVOLVE INTO STEADY STATE IN 0.5 S
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STEADY STATE CURRENT AND ELECTRIC FIELD PROFILES
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SUMMARY / PLAN
Summary

 The inverse equilibrium solver TOQ has been integrated into ONETWO. It is the basis
for the integration of MHD instability codes and ONETWO.

 The slowing down of a DIII-D RWM discharge due to error magnetic field has been
modeled using ONETWO. Magnetic drag due to error field can qualitatively describe
the plasma slowing down.

 ONETWO is being applied to model EAST.

Future direction

 Integrate stability codes (ELITE, BALOO ) into ONETWO and simulate the plasma
evolution self-consistently with  stability analyses.

 Use ONETWO to simulate  EAST AT discharges: achieve high β with optimized current
profiles and full non-inductive current drive.

** D.  Zhou would like to thank Dr Jim Leuer for the EAST equilibrium calculations.


