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Summary
• Tritium retention in divertor tokamaks appears to be governed by fast 

parallel flow in the SOL, conveying wall-released carbon to the inner divertor
where tritium co-deposits build up, without saturation.

• Extrapolation to ITER indicates that the permitted in-vessel tritium inventory 
could be reached in a small number of shots.

• Such fast SOL flow - far from the divertor - was unexpected. The 
experimental evidence for it is still quite limited and a theoretical explanation 
has not yet been found.

• To better quantify this effect, 13CH4 was injected toroidally-symmetrically at 
the top of lower single null discharges in DIII-D.

• The toroidal symmetry was key, greatly facilitating diagnosis and modeling, 
while minimizing the disturbance to local plasma conditions.



Summary (Cont’d)

• The CII and CIII emissions were recorded by toroidally-viewing 
cameras. The 2D reconstructed camera images provided 
direct, qualitative visual evidence of fast SOL flow toward the 
inside. 

• Quantitative interpretation of 4 different measurements, using 
OEDGE code-modeling, each indicated                     :
1. The most direct indication was the poloidal distributions of the CII 

and CIII ‘clouds’, and particularly their relative shift.
2. Also direct: the CIII poloidal distribution measured by the 

absolutely-calibrated, poloidal-array filterscopes.
3. Less direct: the injection-induced increment to the core C-ion 

content, as measured by CER spectroscopy.
4. Less direct: the deposition pattern of 13C measured in the inner 

divertor.

M||SOL ~ 0.4
1.

2.

3.

4.



• 13CH4 injected into the 
vessel via the toroidally-
symmetrical cryo
pumping plenum at top 
(pumps off).

• Injection region (shaded) 
observed by tangential-
viewing camera (CII, 
CIII) and poloidal array 
of absolutely-calibrated 
filterscopes (CIII).

• Toroidal symmetry 
necessary for both 
measurements.



OEDGE Interpretive Edge Code

• OEDGE = Onion-Skin Modeling (OSM) + EIRENE + DIVIMP for edge
analysis 

• Monte Carlo, MC, codes are used to make most of the comparisons with 
experimental data. 

• EIRENE is a neutral hydrogen MC code.

• DIVIMP is an impurity neutral & ion MC sputtering & transport code that 
includes methane-breakup kinetics.

• The MC codes require a “plasma background” into which to launch particles 
– provided by OSM.

• OSM: a semi-empirical approach to 2D edge modeling. As much as 
possible, experimental data is used as input. 
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matching Dα, Dβ, Dγ,identifies Te at inner target quite precisely
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Dγ
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wall



OSM solution using outer target probe data as input, 
matches well the ne and Te profiles measured in the outer 
main SOL by reciprocating probe, RCP, and Thomson –

although requiring small shifts in separatrix location.
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wall

outer
wall

separatrix separatrix



Top
2D reconstruction
of CII and CIII
images from 
toroidal-viewing 
cameras. 

Bottom
code results 
assuming M|| = 0.4.

Relative poloidal
shift of CIII cf. CII 
indicates fast 
transport toward

inside.

CII CIII
Expt. Expt.

Code Code
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Comparison of
poloidal profile of 
CIII measured by
the upward-looking
filterscope -
absolutely 
calibrated -
compared with code
results assuming 
various parallel M||.

M|| ~ 0.4 - 0.6 
indicated.

Poloidal profile of absolutely 
calibrated CIII (465 nm) emissivity
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The increment to the
calculated C-ion
density in the
confined plasma is
quite sensitive to the
assumed value of
M||SOL – and more
than to Dperp.

M|| ~ 0.5 indicated

Increment in C-ion separatrix density
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Experiment (CER)

Faster SOL flow makes divertor sink-action 
stronger, reducing C-ion density in core



The Engelhardt Model
(1978) explains these

trends
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….this despite:
(a) large distance between 13C

source and sink
(b) poorly known/understood plasma

conditions in (detached) inner 
divertor

(c) unknown role of other forces on C-
ions

(d) re-distribution of 13C-deposits by 
ongoing PSI at inner target

(e) assumption of constant M||

• Re-distribution of deposits 
evidently not significant for low 
power L-mode used here

M|| ~ 1/2 indicated.
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4.Surprisingly, the 13C-deposition pattern on the inner 
target – both shape and magnitude – is a fairly 

sensitive indicator of M||SOL



Conclusions
• Toroidally-symmetric injection of 13CH4 at the top of
DIII-D has provided the most direct and quantitative
evidence to date for the existence of fast transport of
C-ions along the SOL into the inner divertor.

• Only net deposition causes non-saturating build-up of
tritium co-deposits.

• The observed SOL carbon transfer process is
efficient, conveying much of the wall-released C to
the inner divertor, causing substantial net deposition
and rapid, non-saturating build-up of T co-deposits.


