Comparison of Resonant Field Amplification in High Beta Plasmas in DIII-D and JET

by

H. Reimerdes, in collaboration with

M. Bigi¹, R.B. Buttery¹, M.S. Chu², A.M. Garofalo, M.P. Gryaznevich¹, T.C. Hender¹, D.F. Howell¹, G.L. Jackson², R.J. La Haye², Y.Q. Liu³, G.A. Navratil, M. Okabayashi⁴, S.D. Pinches⁵, J.T. Scoville², E.J. Strait², and EFDA-JET Workprogramme Collaborators

> ¹EURATOM/UKAEA Fusion Association ²General Atomics ³Chalmers University ⁴Princeton Plasma Physics Laboratory ⁵Max-Planck-Institut für Plasmaphysik

> > Presented at 46th Annual Meeting American Physical Society Division of Plasma Physics Savannah, Georgia

> > > November 15–19, 2004

Columbia University

A EUROPEAN FUSION DEVELOPMENT AGREEMENT

316-04/HR/rs

Resonant field amplification important for operation above the no-wall beta limit

• Resonant field amplification (RFA) [Boozer, *Phys Rev Lett* 86 (2001) 1176]

Externally applied resonant fields can excite a weakly damped mode

 $A_{RFA} = \frac{\text{plasma response}}{\text{externally applied field}}$

- The **resistive wall mode** (RWM) in a fast rotating plasma can be weakly damped
 - Damping caused by plasma rotation Ω_{rot} and some dissipation in the plasma
 [Bondeson and Ward, *Phys Rev Lett* 72 (1994) 2709]
- Extrapolation of stabilizing effect of Ω_{rot} to future experiments requires detailed understanding of the dissipation mechanism

Cross-machine comparison helps to identify the important elements for RFA and RWM stabilization by plasma rotation

Similar discharges in DIII-D and JET

- Match ideal MHD properties of the plasma
 - Plasma shape
 - Safety factor profile
 - Pressure profile
- Match dissipation properties
 - Plasma rotation normalized to the inverse of the Alfvén time τ_{A}
- Experiments differ in the wall properties
 - Wall position $r_W/a \sim 1.2$ (DIII-D) versus ~ 1.35 (JET)
 - Characteristic wall time $\tau_W \sim 3.5\,ms$ (DIII-D) versus $\tau_W \sim 5.0\,ms$ (JET)

DPP Meeting New 15-10 Sevenneh Georgie

Ideal MHD properties

- → Calculated $\beta_{no-wall}/I_i$ agree within 15%
- → While in DIII-D β_{ideal-wall} exceeds β_{no-wall} by ~60%, the greater wall distance in JET reduces this gain to ~30%

→ Decrease Ω_{rot} in DIII-D by superposing n=1 magnetic braking

EUROPEAN FUSION DEVELOPMENT AGREEMENT

RFA measurement on DIII-D and JET using external error field correction coils with similar geometry

- Apply resonant field:
 - One pair of the error field correction coils (C-coil in DIII-D and EFCC in JET)
 → apply pulses with a large n=1 component
- Detect plasma response:
 - Toroidal arrays of external B_r loops measure the magnitude and toroidal phase of the n = 1 perturbation

Apply external magnetic n = 1 perturbations when β exceeds no-wall limit

FUSION DEVELOPMENT AGREEMENT EUROPEAN

In DIII-D RFA increases significantly when β exceeds the no-wall limit

- Increase of the RFA when β_N exceeds the calculated $\beta_{N,no-wall}$ similar to previous DIII-D results [Garofalo et al, Phys. Plasmas **10** (2003) 4776]
- Large scatter in the RFA magnitude and phase

RFA depends on plasma rotation

- While the RFA magnitude increases with β , it decreases with increasing rotation
- No obvious dependence of the toroidal phase on $\Omega_{\rm rot}$

RFA depends on plasma rotation

- While the RFA magnitude increases with β, it decreases with increasing rotation
- No obvious dependence of the toroidal phase on $\Omega_{\rm rot}$
- Linear correction for $\Omega_{\rm rot}$ dependence reduces the scatter of the RFA magnitude

In JET RFA also increases significantly when β exceeds the no-wall limit

RFA magnitudes at the plasma boundary in DIII-D and JET are in quantitative agreement

46th DPP Meeting, Nov 15-19, Savannah, Georgia

- In DIII-D and JET the resonant field amplification increases significantly once β is close or above $\beta_{no-wall}$
- In DIII-D the RFA magnitude increases with decreasing plasma rotation consistent with larger amplification closer to marginal stability
- Evaluating the RFA in both devices in plasmas with the same normalized plasma rotation (\rightarrow dissipation) at the plasma boundary (\rightarrow external kink) and at the same value of C_{β} (\rightarrow ideal MHD) results in quantitative agreement

