Dependence of divertor baffle heating during QH mode in DIII-D*

C.J. Lasnier (LLNL), W.P. West, K.H. Burrell, J.S. deGrassie, J. Watkins (SNL) E.J. Doyle (UCLA)

Abstract

We found previously that the upper outer baffle of DIII-D was receiving an amount of heat comparable to the outer strike point during QH mode in uppersingle-null discharges[1]. Here we investigate the dependence of this heat flux on variations in plasma current, distance between the separatrix and outer wall or floor, up-down magnetic balance in double-null, injected neutral beam power, and ratio of more tangential to less-tangential beams. We use these results to test the hypothesis that the baffle heating is due to ions on large banana orbits.

[1] J. Nucl. Mater. 313-316, 904 (2003)

Introduction to QH mode

Definitions

QH-mode: Quiescent H-mode

- An ELM-free H-mode with density and radiated power control and extended duration
- Achieved with strong pumping, counter neutral beams,

large outer gap (~10 cm)

QDB: Quiescent Double Barrier

• An internal transport barrier (ITB) and a QHmode edge

EHO: edge harmonic oscillation

 A continuous MHD mode usually associated with QH-mode operation

Sustained ELM-free H-mode operating regime obtained with density and radiated power control

The plasma edge during the quiescent phase is an H-mode edge

- Edge gradientsin quiescent phase are comparableto those in ELMing phase
 - -Note high T_i pedestal
- QH-mode edge also has other standard H-mode signatures
 - -Edge E_R well
 - -Reduced turbulence

The EHO is located at the base of the edge pedestal

 High resolution measurements with profile reflectometer systems indicate that the EHO is located at the base of the edge profile pedestal, at or slightly outside the separatrix.

Lei Zeng, UCLA

QH-mode edge has a lower density and higher temperature than conventional ELMing H-mode

Scaling of Upper Outer Baffle (UOB) heat

Divertor heat flux on tile geometry

One set of UOB powers scales with β

Upper outer baffle power vs plasma β

Banana orbits can intersect the baffle

deGrassie orbit3 eps

Upper divertor images

Linear dependence

118745.2000 upper diveror IR

No dependence

118774.2666 upper diveror IR image

shot time chi**2 Rout(m) Zout(m) a(m) elong utri itri indent V (m**3) A (m**2) W (MJ) beta T (%) beta P beta N In Li error(e-4) q1 q95 dsep(m) Bm(m) Zdsep(m) Bm(m) Zdsep(m) BC(m) Zc(m) beta P beta T d Vdia(MJ) Ipmeas(MA) BT(0)(T) Ipfit(MA) Ipfit	$\begin{array}{c} 118774\\ 2675.00\\ 36.679\\ 0.071\\ 0.568\\ 0.0065\\ 1.8697\\ 0.08489\\ 0.08881\\ 1.719\\ 1.8683\\ 0.09887\\ 1.86839\\ 60.12498\\ 0.09887\\ 1.500825\\ 0.1008\\ 0.09825\\ 0.09822\\ 0.124980\\ 0.02656\\ 1.368\\ 1.2285\\ 0.0203\\ 1.3668\\ 1.2285\\ 0.0203\\ 1.3668\\ 1.2285\\ 0.0203\\ 1.3668\\ 1.2285\\ 0.000\\ 1.000\\ 1$	
---	---	--

No dependence Linear depedence

118774 2675.00 118745 2000.00

UOB power dependence correlates with 330Right, 210Right beam voltage

UOB power dependence correlates with 150Right beam voltage

No voltage variation 330Left, 30L 30R not used

UOB heat does not correlate with these

NB voltage 210Left, 150Left

Normalized β

Magnetic axis height

DRSEP Upper outer baffle power vs DRSEP

Neutral beam power

Triangularity

Upper and lower triangularity vs upper outer baffle power

upper outer baffle power (MW)

Gap

Gap to walls vs. upper outer baffle power

upper outer baffle power (MW)

UOBpower vs left-right beam balance

Upper outer baffle power vs left-right beam balance

Heat flux transient at inner strike point

Large heat flux at ISP during gap ramp

Camera 1298_2 Shot 106919 Time 2304.60 mS

shot time chi**2 Rout(m) Zout(m) a(m) elong utri itri indent V (m**3) A (m**2) W (MJ) betaT(%) betaP betaN In Li error(e-4) q1 q95 dsep(m) Rm(m) Zm(m) Ro(m) Zm(m) Ro(m) Zm(m) Ro(m) Zm(m) Ro(m) Zm(m) Ro(m) Zm(m) Ro(m) BT(0)(T) ipfit(MA) BT(0)	$\begin{array}{c} 106919\\ 280000\\ 21,522\\ 1.697\\ 0.576\\ 0.576\\ 0.576\\ 0.074\\ 0.074\\ 0.001\\ 91,8493\\ 2.021\\ 1.09493\\ 2.021\\ 1.09493\\ 2.024\\ 1.09493\\ 2.0244\\ 1.09493\\ 2.0244\\ 1.09493\\ 2.0244\\ 1.09493\\ 2.0244\\ 1.09493\\ 2.0244\\ 1.000\\ 0.0259\\ 2.02759\\ 1.1255\\ 8.6534\\ 1.0284\\ 1$	
106919 2 106919 2	2300.00 2300.00	N N

ISP transient due to gap ramp or $\beta_N \sim 2.5 \times L_i$?

Discussion

- There is one class of QH time slices in with UOB power ~linear with β , and another class with no dependence on β .
- The linear UOB power case is strongly favored by the higher of the two NB voltages used- right beams but not left. This is consistent with increased ion loss due to Alfvén eigenmodes, which occur at the higher beam energy.
- No new evidence of banana effects
- At times during a QH outer gap ramp, there is a large transient heat flux at the inner strike point. This happens at various times in the gap ramp, and independent of the phenomenological $\beta_N \sim 2.5 \times L_i$ 'limit'. The mechanism of this transient is still under investigation.

