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Advanced Tokamak scenarios in burning plasma devices
with By > Py newan requires resistive wall mode (RWM)
stabilization either by high toroidal rotation or feedback
control using a magnetic coil set. Present modeling predicts
Vv, in ITER is not sufficient for RWM stabilization, so a
goal of the DIII-D program is to demonstrate feedback
stabilization at low rotation. The DIII-D tokamak is
presently configured with all neutral beam injectors in the
same direction so this large momentum input must be
counteracted with an externally applied torque to achieve
low v,. Both n=2 and n=3 magnetic braking (non-resonant
with the n=1 RWM) have been used to produce low
rotation target plasmas. We will discuss the use of both
external (C-coil) and internal (I-coil) picture frame coils to
reduce the toroidal rotation at the m/n=2/1 flux surface to
values below w_,;, (W, ~ 0.02 ®,..,) and, in particular,
the dependencies of coil current, 45 and n, in obtaining
low rotation with 3, above the no-wall limit. The non-
resonant fields also reduce ELM amplitude and we will
present these observations.

*Supported by U.S. DOE under DE-FC02-04ER54698, DE-FG02-
89ER53297, and DE-AC02-76CH03073.



TWO TECHNIQUES HAVE STABILIZED RESISTIVE WALL MODES (RWMs)
ABOVE THE NO-WALL f§ LIMIT IN DIII-D

® Rotational stabilization with uni-directional neutral beams

® Active feedback stabilization with n=1 coil sets
6 coil external compensating set (C-coils)
12 coil internal set (I-coils)

ADVANCED TOKAMAK SCENARIOS FOR ITER PREDICT TOROIDAL
ROTATION WILL BE TOO LOW FOR EFFECTIVE ROTATIONAL
STABILIIZATION

® Additional coil set for RWM stabilization is being considered for ITER

DIII-D CAN EXPLORE LOW ROTATION SCENARIOS WITH RWM
FEEDBACK STABILIZATION

® Effective means of counteracting NB torque is required
n=1 braking is effective but interferes with n=1 RWM stabilization
Either coil set can be configured as n=2 or n=3 to provide non-resonant drag while
the other coil set is used for n=1 RWM feedback stabilization



ROTATIONAL STABILIZATION OF THE RWM CAN EXTEND THE
OPERATING REGIME FROM f,6-wail UP TO THE IDEAL WALL 3 LIMIT
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- Operation in the wall stabilized regime with
Bn~61 and B, reaching 6%

Operation above the no-
wall limit is particularly
important for advanced
tokamak (AT) scenarios

— ATs rely on a large
fraction of bootstrap
current

— Broad current
profiles greatly
benefit from wall
stabilization
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DIRECT MAGNETIC FEEDBACK SUSTAINS
BN > BN,no wall EVEN WHEN Qrot/Q2A
IS LOWERED TO 1.0-1.5% ON gq=2 SURFACE
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Modeling of RWM stability in ITER steady-state scenario predicts
that the expected rotation is below the critical rotation
required for rotational stabilization

MARS calculation Results
. Scenario 1 [A. Polevoi, et al, 19th + Weak [S-de!oendence of soundwave damping
IAEA conference (2002)] for G4 ranging from 0.2 to 0.7

- Critical rotation for kinetic damping higher at
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Figure 14. RWM stabilization by toroidal rotation with the protile from F'TER design. Plotted s the growth rate versus the central rotation
frequency normalized by the Alfven frequency at the plasma centre. An equilibrium with Cy = 47% is chosen. The different curves
correspond Lo dilferent damping coellicients. k. Tor the Tuid model as well as the kinetic model.

[Q. Liu, et al, Nucl. Fusion 44 (2004) 232]
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TWO COIL SETS CAN BE INDEPENDENTLY CONNECTED TO
PRODUCE n=1,2,or 3 MAGNETIC FIELDS, OR COMBINATIONS

(Example: C-coil used for n=1 RWM feedback stabilization and I-coil for n=3 braking)
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TOROIDAL ROTATION PROMPTLY DECREASES WITH
THE APPLICATION OF n=3 I-COIL CURRENT
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WITH n=3 BRAKING, ROTATION IS PROMPTLY

REDUCED ACROSS THE OUTER PROFILE (q > 2)
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I-coil (n=3) BRAKING IS MORE EFFECTIVE THAN THE
C-coil, ESPECIALLY AT LARGER NORMALIZED RADII
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FOURIER COMPONENTS FROM I-COIL OR -C-COIL
CONNECTED IN AN n=3 CONFIGURATION

3.0F n=3, External C-Coil
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WITH NO FEEDBACK, n=3 I-COIL BRAKING CAN SLOW TOROIDAL
ROTATION UNTIL Q¢ = Q¢rit, DESTABILIZING THE RWM

FUNCTIONAL DEPENDENCES (q95, profile effects, TAl1fven) ARE BEING INVESTIGATED
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NON-RESONANT BRAKING IS PRODUCED WITH
I-COIL, C-COIL, OR BOTH

0.06 A A I-éoil (lRedlw/RlWMl) ! ' ' ' I
- 00O C-coil (Red w/RWM)
% % Both Coils
A O
A
O
0.04 -
*
Qq)/ g2Alfven - O
= O
(pq—Z) - O 5
AA ¥
A
*
0.02 A "
3
- 3
K
0.00 1 1 L | 1 1 1 | 1 1 1 ]
0 2 4 6



NON-RESONANT BRAKING EXPERIMENTS SUGGEST
A TRESHOLD, Q.;, WHICH IS A FUNCTION OF pn
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MARS predictions of Q_;, in qualitative agreement
with measurements

Low-li scenario
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with weak § dependence significantly lower Q

» Both damping models predict Q. within a factor of 2
— Kinetic damping generally underestimates Q_

« Both models predict the trend of a lower Q_, in the moderate-/ scenario
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IS n=3 BRAKING
ACTUALLY A RESONANT EFFECT?

@ Strong edge interaction observed with n=3 I-coil
(but not with n=3 C-coil)

— Changes in toroidal rotation most pronounced in the edge

— ELM amplitude reduced with I-coil enabled and totally suppressed at q¢5 ~ 3.5+0.05
— H-mode pedestal is broadened

@ Physical mechanism for the n=3 edge effects has not been identified

—  Fourier spectra does not show strong resonant fields at
qos ~ m/3 (m=10,11,12)

—  Stochastic fields are a possible mechanism, but ELM modification occurs over a broader qqs
range than other types of discharges (Moyer, J12.004)

—  Edge harmonic oscillation (EHO) is observed on some discharges (Burrell, BI1.002)

307-04 GLI/wj



I-coil (n=3) CLEARLY REDUCES ELM AMPLITUDE AND INCREASES
ELECTRON PEDESTAL WIDTH. ROTATION PROFILES VARY WITH q95
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EHO IS OBSERVED IN SOME CO-injection n=3 I-coil DISCHARGES.
CHANGES IN ROTATION PRECEDE CHANGES IN ELM BEHAVIOR
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MODELING SHOWS NO STRONG RESONANT FIELDS AT THE
PLASMA EDGE WITH n=3 I-COIL EXCITATION ("Odd Parity')
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SUMMARY

® Both external coil sets, I-coil and C-coil, have successfully been used for rotational
braking

® With sufficient n=3 drag, resistive wall modes are observed
® C(ritical frequency, Q. for onset of RWMs is a function of Sy

® I-coil is more effective than C-coil in braking

— Effect is most pronounced near plasma edge
— Higher I-coil current produces lower rotation, though not as strong as theory predicts
— n=2 configurations have also successfully reduced toroidal rotation

® Strong reduction of ELM amplitude is observed
with n=3 I-coil

— Observed over a broad range of g5
— Physical mechanism has not been determined. May be stochastic, EHO, or resonant interactions
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