Recent Progress on QH-Mode Plasma Studies in DIII-D

by P. Gohil in collaboration with

K.H. Burrell, T.A. Casper¹, E.J. Doyle², G.L. Jackson, P. Snyder, and W.P. West

¹Lawrence Livermore National Laboratory ²University of California, Los Angeles

Presented at 46th Annual Meeting American Physical Society Division of Plasma Physics

Savannah, Georgia

November 15-19, 2004

QH/QDB PLASMAS

- Quiescent H–mode (QH–mode) plasmas exhibit H–mode confinement levels (H₈₉ ~ 2) without the presence of ELMs
 - Constant density and radiated power achievable for long duration (>4 s or 30 τ_E or 2–3 τ_R)
 - Quiescent double barrier (QDB) plasmas have an internal transport barrier (ITB) with a QH–mode plasma edge
 - QH-mode plasmas have been observed on several tokamaks of varying sizes and ρ_* : 3.5 × 10⁻³ ≤ ρ_* ≤ 1.5 × 10⁻² (DIII–D, AUG, JT-60U, JET)

MAIN POINTS

- The QH–mode pedestal at high δ is marginally stable to current driven modes at low to medium n
- Impurities are exhausted faster in a QH–mode plasma than in an ELMing plasma
- ECH, ECCD and NBI have been used as effective tools to control q₀ in QDB plasmas
- QDB plasmas compare favorably in performance with other AT plasma regimes e.g. hybrid, RS (determined from a multi-machine database)

STABILITY ANALYSIS OF QH-MODE DISCHARGES

• Why do the ELMs go away?

- Nonlinear growth of coupled peeling/ballooning modes is the leading model for the ELMs
- Determine where QH-mode edge plasma conditions lie on stability diagram
- Stronger plasma shaping (higher δ,κ) results in higher boundary values for J_{ped} and P'_{ped}
- Stability analysis using ELITE code

Snyder et al., Phys. Plasmas, <u>9</u>, 2037 (2002)

DIII-D OPERATES NEAR EDGE CURRENT LIMIT TO PEELING MODES

- Increasing plasma current (1 MA/s) in QH-mode plasmas causes return of ELMs in about 20 ms, while decreasing current at same rate allows plasma to stay in QH-mode
 - Ramp rates as low as 0.15 MA/s cause return of ELMs
- This behavior indicates the QH-mode edge is close to the J_{edge} limit in the peeling -ballooning mode diagram
- Being close to this limit is also consistent with control room observation that QH-mode is easier to get at lower plasma currents

INPUT BEAM POWER IS CHANGED IN ATTEMPT TO CHANGE EDGE GRADIENTS

• Edge gradients saturate as power increases

SAN DIEGO

• Process limiting edge gradients allows QH–mode operation at powers up to core beta limit

INCREASING THE TRIANGULARITY LEADS TO DOUBLING OF THE THE PEDESTAL DENSITY AND PEDESTAL PRESSURE

 Increased triangularity increases the density and pressure across the whole plasma

NATIONAL FUSION FACILITY

HIGH TRIANGULARITY QH-MODE PLASMAS ARE MARGINALLY STABLE TO CURRENT DRIVEN PEELING/BALLOONING MODES

The impurity decay constant at the plasma edge increases with the pedestal density

- The impurity decay constant at the plasma edge increases with the pedestal density
- EHOs exhaust impurities faster than the ELMs

- The impurity decay constant at the plasma edge increases with the pedestal density
- Edge impurity confinement increases with Z

DIII-D QDB DISCHARGES HAVE COMPARABLE PERFORMANCE TO HYBRID AND REVERSE SHEAR DISCHARGES

Sips et al., IAEA (Vilamoura), IT/P3-P36 (2004)

- The QH–mode pedestal at high δ is marginally stable to current driven modes at low to medium n
 - Determined from edge stability modeling using the ELITE stability code combined with edge profile analysis
 - QH–mode and ELM behaviour is very sensitive to inductive current ramps
- Impurities are exhausted faster in a QH–mode plasma than in an ELMing plasma
 - The edge impurity confinement increases with the pedestal electron density
- ECH, ECCD and NBI have been used as effective tools to control q₀ in QDB plasmas
- QDB plasmas compare favorably in performance with other AT plasma regimes e.g. hybrid, RS (determined from a multi-machine database)

