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Introduction
A method for evaluating linear resistive MHD stability [1] has been
implemented for the 2D toroidal case in the TWIST-R code. In 1D, the

algorithm was previously shown to be accurate, with good convergence,

even for irregular singularities [2]. Challenging numerical issues arise in
2D due to coupling of the additional regular solution components,
which need to be treated properly across the singular layer,
singularities in coefficients that need to be cancelled exactly, and
coordinate singularities at the magnetic axis. Using an analytic
Solov’ev equilibrium to systematically check and benchmark the code,
all the major numerical issues have been resolved and physically
meaningful solutions and asymptotic matching data are obtained.
Convergence in most cases is near quadratic for a range of values of the
Mercier index @ = +/—D; well beyond that possible for previous
asymptotic methods. Benchmarks for the Solov’ev case and

numerically generated equilibria will be discussed.
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TEARING STABILITY IS AN UNRESOLVED THEORETICAL PROBLEM

® Theory of tearing modes in low f3 I-D geometry is well established

— Linear: Signof A' « [W]/Wo Cs/CL  — Nonlinear W goseripes
provides stability criterion (FKR) dt

_ island growth (Rutherford)
A" = Ajnerayer (Q) provides growth rates (GGJ)

® Extension to finite  2-D systems has been problematical

— Rational surfaces are coupled A' is not a number!

— Atfinite B, [P'] /W but Cs/CL is finite for 1/2 < u<1:
How is either related to linear or nonlinear stability?

— Neoclassical effects important in nonlinear regime and connection between
linear, Rutherford, and neoclassical regimes is not fully clear

® Many issues were resolved by Chu, Pletzer, Dewar, Greene (1993) but

some still remain:
— Numerical issues not fully resolved for u>1

— A'=Cs/CL is finite for u < 1 but Cs/ CL -> infinity at integer u

New approach fully resolves numerical issues and has potential to
resolve remaining physics issues
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TWIST-R FORMULATION HAS SIGNIFICANT ADVANTAGES
OVER OTHER RESISTIVE MHD STABILITY CODES

@ Asymptotic matching codes have significant advantages for linear calculations over
more comprehensive resistive MHD codes MARS, NIMROD or M3D:

— High S limit applicable to experiments (S > 10)
(cf S ~104 to 10° for initial value codes)
— Fast and accurate (cf hours for linear runs of initial value codes)
— Suitable for exploring detailed physics issues and for extensive parameter scans
® TWIST-R is an asymptotic linear resistive MHD matching code, similar in principle to
PEST-IIl but without well known PEST-Ill limitations:
— No restriction on u and therefore (3 or profiles (cf PEST-IIl: 1/2 < u < 1)

— Numerically stable for infinite mesh (cf PEST-III: in principle unstable with
very fine meshes)

— No restriction on inner layer physics model (cf PEST-lll: GGJ model)

TWIST-R formulation is a new general algorithm for solving differential
equations with singular solutions

=> General applications outside fusion and plasma physics
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TWIST-R CODE WORKS EXTREMELY WELL FOR 1-D PROBLEM

® New formulation in TWIST-R code transforms asymptotically singular solutions
to finite solutions

— Valid for arbitrary u=/-D;  (Dy=-1/4 + p'lq’2ViT) (cf PEST-Ill valid for 1/2 < p. <1)
=> Valid for arbitrary §

® The approach was tested on one dimensional Sturm-Liouville problem with one
singular point, which models the Newcomb equation with a resonance harmonic
around a single rational surface:
— Comparison between the results from this approach with the known analytic
solution has shown excellent accuracy and robustness of this method

® The formulation was shown to also 0.0
work for arbitrary 5 using a specially
constructed analytic cylindrical 10
equilibrium sequence A, rz 0 '
— Reproduces well the parity » 104' |
selection poles at integer 30|
and half integer n even |
beyond u =1 4.0 : :
yonew 00 05 10 15 20 25

W
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TWIST-R FORMULATION ALSO WORKS EXTREMELY WELL FOR
1-D SIXTH ORDER INNER LAYER PROBLEM

® The technique can also be applied to the resistive inner layer problem with

irregular singular points.
— Inner layer problem is sixth order with irregular singularity:

=> Additional non Frobenius solutions present
— Additional large exponential solutions eliminated from boundary conditions

— Additional small exponential solutions are treated but do not invalidate

the technique A

® Results reproduce previous
P P 3r " _TWIST-R

published results over large ,’
parameter range A2 s\ Delta-R ;

- GGJ ~. '
(Glasser et al, Phys. Fluids, i /

27,1225, (1984))
@ Extendable to other inner layer models:
— Density profile model ol
: 8 -7 6 5 -4 -3 -2 -
Galkin, et al, Phys. PI ,
(Galkin, et al, Phys. Plasmas Log,Q

9, 3969, (2002))
0:0 GENERAL ATOMICS
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NEW FORMULATION FOR LINEARTEARING STABILITY IS
IMPLEMENTED FOR ARBITRARY 3 NONCIRCULAR 2-D GEOMETRY

® 2-D version is implemented numerically as finite difference scheme in radial direction
and spectral in poloidal direction

@ Additional complications arise in 2-D:

— Nonresonant poloidal harmonics are present and are coupled to the resonant
large and small Frobenius components

— Nonresonant poloidal harmonics generate a regular component of the
resonant harmonic

=> Regular solution is continuous across rational surface
=> Small Frobenius solution is subdominant to regular solution harmonics
— Spectral pollution needs to be avoided in finite difference scheme

@ 2-D code is undergoing testing and benchmarking
— Tested extensively for analytic Solovev equilibrium

=> Numerically calculated metric coefficients can be compared

term by term to analytic coefficients
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Solov’ev equilibria

Grad-Shafranov equation with a given toroidal current jg:

rATY(r, ) = —rp — ff = (1)

has a family of analytical solutions [Solov’ev,1968], managed by a few

parameters. Consider p’ and f f’ distributions:

d
—p — 8(1 + 042)00;
di) 9
de 5 o ( )
@ = —16a“0 CO,
then the solution is
U(r,2) = Oy [(A* =1r2)(r? = 6°) — 4a®(r? — 0°)2°] ; (3)
where parameters A, J and magnetic axes coordinates:
A2 + §2
A =maxr, d=minr, (rmn,2m) = (\/ ; ,0) (4)
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Major plasma radius R and aspect ratio A are correspondingly:

A+9

1
R=s(A+0) A=3"1% (5)

Magnetic surfaces ¢ (r, z) = const are given by parametric formulas:

A2 2

P2 = 2*‘5 (1 +w(a)cosO) | (6)

AQ 2
2\ 1?2 — 02 = 4+ ° w(a)sin© , (7)

o

where , ,

A® — 9§
w(a) = gV ®

and a is a magnetic surfaces label and © is an periodic coordinate:

a=1—-v/y, €0,1], ©¢€|0,27] . (9)
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A’ and IV Calculations

Analytical Solov’ev equilibria were widely used for both code testing

and to compute A’(u) and I'"(u) dependencies. This has the unique
advantage that it is a fully toroidal analytic solution for which the
metric coefficients and Jacobian can be derived analytically and used
for comparison. The detailed description of the analytic equilibrium,
including metric coefficients representation, Jacobian, coordinate
transform etc., is given in Ref.[3]. A typical toroidal equilibrium
configuration with aspect ration A = 3, parameters
A=20=1a=1.0005 06 = 0.05 and corresponding profiles p/, f ', q
is presented in Fig.1 on grid N x M = 64 x 128. There is only

m/n = 2/1 (¢ = 2) resonance surface for the case, which is marked with
red dashed line. Mercier index at the resonance surface is u = 1.39.
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Figure 1: Solov’ev equilibrium and profiles
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Eigenfunctions and its harmonics

The TWIST-R code computes total solution (eigenfunction) of Euler
equations for inertia free equilibrium plasma configuration and then
estimates Frobenius expansion coeflicients for large, small and regular
solutions, which compose the total solution [1]. The computed total
solution (eigenfunction), scaled with z%-°T#, for the presented above
equilibrium Fig.1 is shown in Fig.2. Here x = |t — ¢,.| /¥yq. is the
distance from the resonance surface labelled with ,.. Toroidal angle
cross section is displayed here and the inner red circle marks the

resonance surface location.
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r

Figure 2: Total solution (scaled displacement) for Solov’ev equilibrium
with y = 1.39

11 poloidal harmonics were involved in the calculation and the radial

distribution of first six of them (the rest even smaller) is shown in Fig.3.
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Figure 3: Poloidal harmonics for the radial component of the total

displacement € with = 1.39

For another Solov’ev equilibrium with pu = 0.82, the total displacement

is shown in Fig.4
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Solovev equilibrium: 2/1 mode: = 0.82 chosen for benchmarking
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Figure 4: Total scaled displacement for Solov’ev equilibrium with p =
0.82

Vector plot of the scaled displacement shows a tearing structure of the

solution for both cases, see Fig.5.
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NUMERICAL SOLUTIONS FOR u = 0.82 SHOW PHYSICALLY
EXPECTED BEHAVIOR OF NON-RESONANT HARMONICS

€ harmonics
1
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Figure 5: Tearing mode structure of the scaled eigenfunction for Solov’ev

equilibrium
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Convergence

Radial grid number N and poloidal harmonics number M were varied to

study the convergence. Typical behavior of eigenfunctions with

different N number is shown in F'ig.6.

m/n=2/1 resonance harmonic

0.8 0.85
1 _W/wmax

Figure 6: Figenfunction behavior near resonance surface
with N = 64, 128, 192, 256

A best fit data approximation is used to analyze the convergence rate
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automatically from the computed data with different grid numbers.
The convergence behavior is given in Fig.7. The estimated convergence
rates were found to be —1.827 for A’ (close to quadratic) and —1.27 for
IV (they are also displayed in x-axes figure labels) and are used to get

the converged values A’ and IV, (which corresponds n = o0).

<10 A(n=ec) = ~39608.1174 I"(n=w) = 20.5929
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Figure 7: Convergence of A’ and I'V for = 1.39
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A'() and I'(u) for Solov’ev equilibria
Varying parameters o, q(0), « (see Sec. II A), equilibria with the

Mercier index p in the range 0.5 < u < 1.5 was obtained. Monotonic q
profile with 1 < ¢,nin <= ¢ <= Qmaz < 3 is used to work with one
resonance surface only. All equilibria should be ideal MHD stable, what
was checked with ideal MHD stability code TWIST [8, 9]. A few

computed A’(u) and I'V(u) for Solov’ev equilibria are shown in Fig.8.

ore o

Figure 8: A’(u) and I'V(u) for Solov’ev equilibria
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Numerically computed equilibria

Numerically computed by POLAR-2D code [10], equilibrium series was
analyzed against resistive modes. The equilibrium family was
prescribed by given distributions of the plasma current with profiles:

dp €1€2 1
—_— p— 1 —_ 61 .
o P
(10)
df*

dw — f(? (Iw’ma T wedge|a1 — |¢ma _ ¢|Oé1)042 :

where corresponding plasma pressure was p(1)) = po(1 — €2a)* and
Yma and Yeq4e Were poloidal flux at magnetic axis and plasma
boundary and a = 1 — 9 /1,,,,. Circular plasma cross section was

chosen with aspect ration A = 3.

A plasma configuration and profiles for the parameter set
c1=1, =1, a1 =1, as =1, fy =0.272 are shown in Fig.9. py was
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chosen to provide 3 = 15.2% and p = 0.5075 for the equilibrium.
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Figure 9:  Toroidal equilibrium with profiles (original and fitted by
TWIST-R)

Computed A’ and IV demonstrated convergence as shown in Fig.10.
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Figure 10:  Convergence for toroidal equilibrium with circular cross

section

The parameters pg, €1, €2, a1, as were varied to keep the equilibria
ideally stable, what was checked with the ideal MHD stability code
TWIST, and a series of finite 5 equilibria was computed.
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Discussion and Summary

The latest version of the TWIST-R code, with many improvements
made, provides physically reasonable solutions for the test cases.
Investigated Solov’ev equilibria demonstrated near-quadratic
convergence in the matching data A’ and I'” with radial mesh, over a
range of Mercier index 0.5 < p < 1.5 values. The study also showed the
expected pole in the tearing mode matching data A’(u) at p = 1.
Numerically computed, circular cross section toroidal equilibria were
also tested and A’ and IV were computed, with good convergence

properties obtained for these cases as well.
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2-D IMPLEMENTATION PRODUCES PHYSICALLY REASONABLE
SOLUTIONS BUT NUMERICAL DIFFICULTIES REMAIN

@ Solutions appear to be well behaved near resonant surface:

— Expected discontinuity in derivative of small Frobenius solution at rational
surface is well reproduced

— Numerically poor behavior of high m harmonics exists near axis:
= High m harmonics should vanish like r™ as r -> 0 but vanish much more slowly
=> Low m harmonics however are well behaved, including resonant m = 2

® A'values are ridiculously large despite the well behaved solutions
— I" values are apparently reasonable

— Near quadratic convergence with radial mesh and poloidal harmonics

This is the most pressing remaining issue

@ Solutions are sensitive to the representation used for the equilibrium current density:
— Numerical representation of curl(B) or source functions

=> Suggests equilibrium accuracy is a crucial issue
This may be source of numerical problem with large A' values
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