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Introduction
A method for evaluating linear resistive MHD stability [1] has been

implemented for the 2D toroidal case in the TWIST-R code. In 1D, the

algorithm was previously shown to be accurate, with good convergence,

even for irregular singularities [2]. Challenging numerical issues arise in

2D due to coupling of the additional regular solution components,

which need to be treated properly across the singular layer,

singularities in coefficients that need to be cancelled exactly, and

coordinate singularities at the magnetic axis. Using an analytic

Solov’ev equilibrium to systematically check and benchmark the code,

all the major numerical issues have been resolved and physically

meaningful solutions and asymptotic matching data are obtained.

Convergence in most cases is near quadratic for a range of values of the

Mercier index µ =
√
−Di well beyond that possible for previous

asymptotic methods. Benchmarks for the Solov’ev case and

numerically generated equilibria will be discussed.
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Solov’ev equilibria
Grad-Shafranov equation with a given toroidal current jφ:

r∆∗ψ(r, z) = −rp′ − 1
r
ff ′ = jφ (1)

has a family of analytical solutions [Solov’ev,1968], managed by a few

parameters. Consider p′ and ff ′ distributions:

dp

dψ
= 8(1 + α2)C0;

df2

dψ
= −16α2σ2C0;

(2)

then the solution is

ψ(r, z) = C0

[

(∆2 − r2)(r2 − δ2)− 4α2(r2 − σ2)z2
]

; (3)

where parameters ∆, δ and magnetic axes coordinates:

∆ = max r, δ = min r, (rm, zm) = (

√

∆2 + δ2

2
, 0) (4)
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Major plasma radius R and aspect ratio A are correspondingly:

R =
1

2
(∆ + δ); A =

∆+ δ

∆− δ ; (5)

Magnetic surfaces ψ(r, z) = const are given by parametric formulas:

r2 =
∆2 + δ2

2
(1 + ω(a) cosΘ) , (6)

z
√

r2 − σ2 =
∆2 + δ2

4α
ω(a) sinΘ , (7)

where

ω(a) =
∆2 − δ2
∆2 + δ2

√
a , (8)

and a is a magnetic surfaces label and Θ is an periodic coordinate:

a = 1− ψ/ψm ∈ [0, 1] , Θ ∈ [0, 2π] . (9)
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∆′ and Γ′ Calculations
Analytical Solov’ev equilibria were widely used for both code testing

and to compute ∆′(µ) and Γ′(µ) dependencies. This has the unique

advantage that it is a fully toroidal analytic solution for which the

metric coefficients and Jacobian can be derived analytically and used

for comparison. The detailed description of the analytic equilibrium,

including metric coefficients representation, Jacobian, coordinate

transform etc., is given in Ref.[3]. A typical toroidal equilibrium

configuration with aspect ration A = 3, parameters

∆ = 2, δ = 1, α = 1.0005, σ = 0.05 and corresponding profiles p′, ff ′, q
is presented in Fig.1 on grid N ×M = 64× 128. There is only
m/n = 2/1 (q = 2) resonance surface for the case, which is marked with

red dashed line. Mercier index at the resonance surface is µ = 1.39.
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Figure 1: Solov’ev equilibrium and profiles
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Eigenfunctions and its harmonics

The TWIST-R code computes total solution (eigenfunction) of Euler

equations for inertia free equilibrium plasma configuration and then

estimates Frobenius expansion coefficients for large, small and regular

solutions, which compose the total solution [1]. The computed total

solution (eigenfunction), scaled with x0.5+µ, for the presented above

equilibrium Fig.1 is shown in Fig.2. Here x = |ψ − ψr|/ψmax is the
distance from the resonance surface labelled with ψr. Toroidal angle

cross section is displayed here and the inner red circle marks the

resonance surface location.
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Figure 2: Total solution (scaled displacement) for Solov’ev equilibrium

with µ = 1.39

11 poloidal harmonics were involved in the calculation and the radial

distribution of first six of them (the rest even smaller) is shown in Fig.3.
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Figure 3: Poloidal harmonics for the radial component of the total

displacement ξ̃ with µ = 1.39

For another Solov’ev equilibrium with µ = 0.82, the total displacement

is shown in Fig.4
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Solovev equilibrium: 2/1 mode:

Contours of ξ
~

   µ = 0.82 chosen for benchmarking
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Figure 4: Total scaled displacement for Solov’ev equilibrium with µ =

0.82

Vector plot of the scaled displacement shows a tearing structure of the

solution for both cases, see Fig.5.
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Figure 5: Tearing mode structure of the scaled eigenfunction for Solov’ev

equilibrium
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Convergence

Radial grid number N and poloidal harmonics number M were varied to

study the convergence. Typical behavior of eigenfunctions with

different N number is shown in Fig.6.
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Figure 6: Eigenfunction behavior near resonance surface

with N = 64, 128, 192, 256

A best fit data approximation is used to analyze the convergence rate
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automatically from the computed data with different grid numbers.

The convergence behavior is given in Fig.7. The estimated convergence

rates were found to be −1.827 for ∆′ (close to quadratic) and −1.27 for
Γ′ (they are also displayed in x-axes figure labels) and are used to get

the converged values ∆′

∞ and Γ′∞ (which corresponds n =∞).
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Figure 7: Convergence of ∆′ and Γ′ for µ = 1.39
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∆′(µ) and Γ′(µ) for Solov’ev equilibria

Varying parameters σ, q(0), α (see Sec. II A), equilibria with the

Mercier index µ in the range 0.5 < µ < 1.5 was obtained. Monotonic q

profile with 1 < qmin <= q <= qmax < 3 is used to work with one

resonance surface only. All equilibria should be ideal MHD stable, what

was checked with ideal MHD stability code TWIST [8, 9]. A few

computed ∆′(µ) and Γ′(µ) for Solov’ev equilibria are shown in Fig.8.
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Figure 8: ∆′(µ) and Γ′(µ) for Solov’ev equilibria
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Numerically computed equilibria
Numerically computed by POLAR-2D code [10], equilibrium series was

analyzed against resistive modes. The equilibrium family was

prescribed by given distributions of the plasma current with profiles:

dp

dψ
= p0

ε1ε2
ψmax

(1− ε2a)ε1−1;

df2

dψ
= f2

0 (|ψma − ψedge|α1 − |ψma − ψ|α1)
α2 ;

(10)

where corresponding plasma pressure was p(ψ) = p0(1− ε2a)ε1 and
ψma and ψedge were poloidal flux at magnetic axis and plasma

boundary and a = 1− ψ/ψma. Circular plasma cross section was
chosen with aspect ration A = 3.

A plasma configuration and profiles for the parameter set

ε1 = 1, ε2 = 1, α1 = 1, α2 = 1, f0 = 0.272 are shown in Fig.9. p0 was
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chosen to provide β = 15.2% and µ = 0.5075 for the equilibrium.
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Figure 9: Toroidal equilibrium with profiles (original and fitted by

TWIST-R)

Computed ∆′ and Γ′ demonstrated convergence as shown in Fig.10.
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Figure 10: Convergence for toroidal equilibrium with circular cross

section

The parameters p0, ε1, ε2, α1, α2 were varied to keep the equilibria

ideally stable, what was checked with the ideal MHD stability code

TWIST, and a series of finite β equilibria was computed.
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Discussion and Summary

The latest version of the TWIST-R code, with many improvements

made, provides physically reasonable solutions for the test cases.

Investigated Solov’ev equilibria demonstrated near-quadratic

convergence in the matching data ∆′ and Γ′ with radial mesh, over a

range of Mercier index 0.5 < µ < 1.5 values. The study also showed the

expected pole in the tearing mode matching data ∆′(µ) at µ = 1.

Numerically computed, circular cross section toroidal equilibria were

also tested and ∆′ and Γ′ were computed, with good convergence

properties obtained for these cases as well.
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