ELM Suppression in DIII–D with Resonant Magnetic Perturbations

by T.E. Evans in collaboration with

G.L. Jackson, R.J. La Haye, T.H. Osborne, M.J. Schaffer, R.A. Moyer¹, J.G. Watkins², M. Becoulet³, P.R. Thomas³, M.E. Fenstermacher⁴, M. Groth⁴, C.J. Lasnier⁴, J.H. Harris⁵, G. Wang⁶, and L. Zeng⁶

> ¹University of California, San Diego ²Sandia National Laboratories ³CEA Cadarache Euratom Association ⁴Lawrence Livermore National Laboratary ⁵Australian National University ⁶University of California, Los Angeles

> > Presented at 46th Annual Meeting American Physical Society Division of Plasma Physics

> > > Savannah, Georgia

November 15-19, 2004

Overview

Evans EO3.007

- Motivation and approach
 - Magnetic perturbation coil description
- ELM suppression results with $n_e \ge 6.5 \times 10^{19} \text{ m}^{-3}$ ($v_* \ge 0.5$)
 - Global change in edge dynamics
 - Reduction in main chamber wall n_e impulses
 - Reduction in divertor impulses
- Variations in ELM suppression behavior with plasma shape (δ) and collisionality (v_{*})
- Summary and Conclusions

The DIII-D I-coil provides a flexible n=3 perturbation system for ELM control

SAN DIEGO

ELMs are suppressed without degrading confinement

Dynamical state of pedestal changes globally

Evans EO3.007

- Suppression seen on:
 - all D_α arrays (outer midplane, upper and lower divertor, inner wall)
 - particle flux and heat flux to the primary (lower) divertor
- ELM transport is replaced by an increase in the edge magnetic field and density fluctuations
 - modulated by a 130 Hz coherent oscillation

Stored energy drops are smaller and slower with the I-coil reducing the impulses by > 3X

tee-04APS-6/11

I-coil reduces ELM density impulses to the wall

tee-04APS-7/11

Langmuir probes show a factor of 8 reduction in the impulsive particle flux to the divertor

SAN DIEGO

tee-04APS-8/11

Peaks in the divertor surface temperature due to ELMs are reduced by at least a factor of 5 with the I-coil

tee-04APS-9/11

Good ELM suppression is obtained in high and low triangularity as well as in ITER scenario 2 shapes

Summary and conclusions

Evans EO3.007

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9 \tau_{\rm E}$ (~1300 ms) to date
 - some isolated ELMs remain with intermittent (~60-1000 ms) quiet periods between them
 - suppression is seen globally on all ELM diagnostics
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - divertor surface temperature spikes reduced by at least a factor of 5
 - density impulses to the main chamber walls due to ELM are eliminated
- A variety of ELM suppression behaviors are observed in plasmas with various shapes (δ) and collisionalities (v_{*}):
 - bursty transport modulated by a 130 Hz coherent oscillation
 - small irregular fluctuations (Type-II ELMs?) with substantially reduced impulses

See Moyer JI2.004 at 15:30 Wednesday afternoon for an extended discussion of this work