Resistive Wall Mode Stabilization with Internal Feedback Coils in DIII–D

by

E.J. Strait

in collaboration with

*Columbia University
†FAR-TECH
‡Princeton Plasma Physics Laboratory
ΔLawrence Livermore National Laboratory

Presented at
Forty-Fifth Annual Meeting
American Physical Society
Division of Plasma Physics
Albuquerque, New Mexico

October 27–31, 2003
Advanced tokamak scenarios (and other magnetic fusion concepts) require wall stabilization of external kink modes for operation at high beta.

A finite-conductivity wall does not completely stabilize the ideal kink mode, but converts it to a slowly-growing Resistive Wall Mode (RWM).

There are two approaches to stabilization of the resistive wall mode:

- Passive: rapid plasma rotation
- Active: feedback control

Internal coils are predicted to be effective for both passive and active control of RWMs.

DIII–D internal coils support RWM stabilization by plasma rotation:
- Feedback-controlled error field correction

DIII–D internal coils improve RWM stabilization by direct feedback control:
- Stabilization at higher beta, lower rotation than external coils.
TWO DISTINCT APPROACHES FOR RWM CONTROL HAVE BEEN PROPOSED

Passive: Plasma Rotation with Dissipation
- Required rotation for stability
 ~ a few % of Alfvén velocity

Active: Magnetic Feedback
- Required power level is modest

\[\Omega = 0 \]

\[G = 0, G = -5, G = -10 \]

STABLE

Ideal-Wall Limit

Increase Rotation

Higher Gain

Ideal-Wall Limit

\[\gamma \tau_w \]

\[\beta \rightarrow \]

No-Wall Limit

\[\beta \rightarrow \]

Ideal-Wall Limit

238-03/rs
PLASMA ROTATION AND DIRECT FEEDBACK CONTROL PROVIDE STABILITY WITH A RESISTIVE WALL

- Rotation stabilizes RWM before feedback is turned on
- Feedback becomes important as rotation decreases
- Resistive wall mode grows ($\gamma^{-1} \sim 4$ ms) when feedback is turned off

Graphical Representation:

- β_N axis
- V_ϕ at $q = 2$ (km/s)
- I-coil Currents (kA)
- δB_p (Gauss)

Timeline:

- Feedback On
- 2.4 ℓ_i ≈ No-Wall Limit

Time (ms):

- 1100 to 1500
NEW INTERNAL CONTROL COILS ARE AN EFFECTIVE TOOL FOR PURSUING ACTIVE AND PASSIVE STABILIZATION OF THE RWM

- Inside vacuum vessel: Faster time response for feedback control
- Closer to plasma: more efficient coupling

- 12 “picture-frame” coils
- Single-turn, water-cooled
- 7 kA max. rated current
- Protected by graphite tiles

G.L. Jackson, G01.003
NEW INTERNAL CONTROL COILS ARE AN EFFECTIVE TOOL FOR PURSUING ACTIVE AND PASSIVE STABILIZATION OF THE RWM

- Inside vacuum vessel: Faster time response for feedback control
- Closer to plasma: more efficient coupling

- 12 “picture-frame” coils
- Single-turn, water-cooled
- 7 kA max. rated current
- Protected by graphite tiles

G.L. Jackson, G01.003
I–COIL CONNECTIONS ALLOW A WIDE RANGE OF \((m,n)\) SPECTRA

- Toroidal mode number: \(0 \leq n \leq 3\)
 - Antisymmetric pairs \((n = \text{odd})\)
 used for most experiments

- Poloidal mode number: \(0 \leq m \leq 4\)
 - 240 degree upper-lower phase difference used for most experiments
ERROR FIELD COMPENSATION IS MOST EFFICIENT WHEN I–COIL FIELD MATCHES RWM STRUCTURE

- Correction field pitch scanned by varying upper/lower coil connections
- Correction field amplitude and phase determined by feedback control
- Constant phase is consistent with correcting a fixed error field

\[\Delta \phi = \text{Upper-Lower Coil Phase Difference (deg.)} \]

\[\Rightarrow \text{Pitch of Applied Field} \]
I–COIL FLEXIBILITY ALLOWS A GOOD MATCH TO THE HELICAL STRUCTURE OF THE $n = 1$ RWM

- Calculated and measured RWM structure agree well

Calculated Mode Structure at Plasma Surface

Measured Mode Structure at Vessel Wall

Calculated I–coil Field at Plasma Surface ($\Delta \phi = 240^\circ$ Connection)
MODELING PREDICTS THAT INTERNAL COILS IMPROVE RWM STABILIZATION BY FEEDBACK CONTROL

- Improved feedback performance is predicted for internal coils
 - Faster time response
 - Improved coupling to plasma
- Feedback stabilization up to the ideal-wall limit requires that coil-wall coupling is not too large, compared to direct coil-plasma coupling:

\[C = \frac{M_{pw} M_{wc}}{L_w M_{pc}} \leq 1 \]

 - In cylindrical model: \(C = 1 \) for external coils;
 \[C = \left(\frac{r_c}{r_w} \right)^{2m} \] for internal coils
- Feedback performance is improved with internal poloidal field sensors
 - Faster time response
 - Decoupled from radial field of control coils
SIMPLE ANALYTIC MODEL OF RWM FEEDBACK SHOWS BENEFITS OF INTERNAL COILS

- Slab model with decoupled poloidal field sensors
- Strong reduction in gain, even for small coil-wall spacing

![Graph showing the gain vs. \(\gamma_0 \tau_w \) (Unstabilized Growth Rate) with different coil configurations and wall distances.]

- External Coils
- Internal Coils
- DiIII-D

- Gain values for different wall distances:
 - \(d/r = 0.008 \)
 - \(d/r = 0.015 \)
 - \(\sim \) DiIII-D
 - \(d/r = 0.03 \)
I-COIL SHOULD PROVIDE RWM STABILIZATION COMPARABLE TO AN IDEAL WALL

- Modeling with VALEN (3D electromagnetics code) using realistic geometry
 - Idealized amplifiers (optimistic)

![VALEN 3-D Graph]

- Growth Rate (s⁻¹)
- No Feedback
- Previous 6-coil set
- 12-coil set (internal)

![Diagram of DIII-D Device]

- Upper I-coils
- Lower I-coils
- Bp probe
- C-coils

DIII-D NATIONAL FUSION FACILITY SAN DIEGO
NOISE AND TIME DELAY LIMIT FEEDBACK CONTROL

- Time-dependent modeling with VALEN
- With noise, system can approach (but not reach) ideal wall limit
 - Broadband noise (1.5 Gauss) and ELMs (6 to 16 Gauss)
 - Resonant RWM response to noise increases closed loop current

- Feedback loop delay time τ_d also limits beta
 - Stabilization limited to $\gamma_{RWM} \leq 0.25 \tau_d^{-1}$

Ideal-Wall Limit

$C_\beta = \frac{\beta - \beta_{no-wall}}{\beta_{ideal-wall} - \beta_{no-wall}}$

Noise on the Sensor (Gauss)

Max Current (Amp)
DIII–D INTERNAL COILS ASSIST RWM STABILIZATION BY PLASMA ROTATION

- I–coil selectively and efficiently corrects the resonant component of the error field

- Previous experiments have confirmed theoretical predictions that RWM is stabilized by plasma rotation frequency ~few % of Alfvén frequency
 - $f_{\text{rot}} \sim 5–10$ kHz for typical DIII–D plasmas

- Minimization of magnetic field errors is crucial to rotational stabilization
 - A weakly stabilized RWM has a resonant response to an external magnetic perturbation (field error, for example)
 - Resonant enhancement of the magnetic perturbation slows the plasma rotation, leading to loss of stability

- Feedback-controlled error field correction with the I-coil maintains plasma rotation
 - Resonant response of stable RWM enhances detection of small error fields
 - Feedback system corrects the error field by minimizing the plasma response

A.M. Garofalo, QP1.031
J.T. Scoville, QP1.036
“MHD SPECTROSCOPY” PROBES RWM RESONANCE

- Frequency scan of rotating $n = 1$ field applied with I–coil
- Plasma response has resonant peak at $f_{RWM} \approx 15$ Hz
- Plasma response increases as β rises above the no-wall limit

Resonant Field Amplification ($n = 1$) Measured with Midplane B_r Loops

- Amplitude
- Phase (deg)
- Frequency of Externally Applied Field f_{ext} (Hz)

β 40% above no-wall limit
β 20% above no-wall limit

H. Reimerdes, G01.003
I-COIL WITH FEEDBACK CONTROL CAN NULL OUT RESONANT FIELD AMPLIFICATION FROM AN EXTERNALLY APPLIED FIELD

○ n = 1 error field pulse applied with external C-coil

\[\delta B_{n=1} \text{ (gauss)} \]

\[n = 1 \text{ Plasma Response} \]

Positive Feedback

No Feedback

Negative Feedback

\[I\text{-Coil with feedback control can null out resonant field amplification from an externally applied field} \]

Time (ms)

2100 2200 2300 2400 2500

I-Coil

\[n = 1 \text{ ampl. (kA)} \]

Positive Feedback

Applied \(B_{n=1} \) Field (C-coil)

No Feedback

Negative Feedback

\[n = 1 \text{ plasma response} \]

113157 113162 113161

\[\text{DIII-D} \]

NATIONAL FUSION FACILITY
SAN DIEGO

12.0

0.0

-2.5

2.5

0.0

2.5

12.0

113157 113162 113161

\[\text{DIII-D} \]

NATIONAL FUSION FACILITY
SAN DIEGO

238-03/rs
FEEDBACK–CONTROLLED ERROR FIELD CORRECTION ALLOWS SUSTAINED OPERATION ABOVE THE NO-WALL BETA LIMIT

- Rotation and stability are lost if error correction is turned off
Stability at higher beta
— Closer to ideal-wall limit

Stability at lower rotation
— Farther below critical rotation frequency

Consistent with modeling
FEEDBACK CONTROL WITH THE I-COIL SUCCESSFULLY STABILIZES THE RESISTIVE WALL MODE

- Rotational stabilization is slowly decreasing
- RWM becomes unstable during 10 ms when feedback is off

![Graph showing the stabilization effect of the I-coil on the resistive wall mode](image-url)
FEEDBACK CONTROL WITH I–COILS STABILIZES RWM AT HIGHER BETA AND LOWER ROTATION

- Good qualitative agreement with MARS modeling of rotational stabilization
 - Feedback allows discharges to go beyond rotation-only stability limit

\[
C_\beta = \frac{\beta_n - \beta_{n \text{ no-wall}}}{\beta_{n \text{ ideal-wall}} - \beta_{n \text{ no-wall}}}
\]

MARS Prediction
q = 2

I-coil Gp/Gd
114819 40/20
114820 40/40
114821 40/0
114822 40/80
114817 No FB

NO FEEDBACK

Magnetic Braking

DIII-D
NATIONAL FUSION FACILITY
SAN DIEGO

238-03/rs
FEEDBACK CONTROL WITH INTERNAL COILS STABILIZES RWM WITH LOW ROTATION

- Magnetic braking reduces rotation to zero in the outer half of the plasma
- Feedback with internal coils maintains stability for >100 ms
- Case without feedback becomes unstable at lower beta, even with rotation
FEEDBACK WITH I-COIL CAN CONTROL RWM GROWTH CLOSER TO THE IDEAL WALL LIMIT

- Observed growth rate of unstable RWM is consistent with VALEN calculation
I-COIL PROVIDES SUSTAINED WALL STABILIZATION AT HIGH BETA

- Beta exceeds estimated no-wall limit for >1 s
 - $\beta_N \sim 6 \ell_i$
 - $\beta_T \sim 6\%$

![Graph showing time series data for β_N, β_T, $P_{NB} (10 \text{ MW})$, and q_{95} over time (ms).]
FUTURE WORK

● Continue to develop basic physics of RWM stabilization
 — In cooperation with JET, JT-60U, ASDEX-Upgrade, MAST, NSTX, HBT-EP, . . .
 — High priority of International Tokamak Physics Activity (ITPA)

● Validate models of feedback control – with and without rotation
 — Develop means of controlling rotation
 ★ Magnetic braking
 ★ RF heating
 ★ Counter-NBI (planned)

● Increase bandwidth of feedback system
 — Modeling indicates bandwidth increase ~factor of 3 is needed to reach the ideal-wall limit
 — Improve existing system
 — Audio amplifiers

● Routine application to stabilization of advanced tokamak plasmas in DIII–D
SUMMARY

- DIII–D’s new internal coils have improved passive and active control of resistive wall modes

- Feedback-controlled correction of resonant error field allows RWM stabilization by plasma rotation
 - Good agreement with calculated mode structure
 - Rotational stabilization sustained for >2.5 s (>500 τ_w)

- Initial results confirm direct feedback contributes to stabilization of the RWM
 - Stability with plasma rotation well below the threshold for RWM stabilization
 - Better performance than external coils

- Flexible, high-bandwidth control coils have many other applications in measurement and control of MHD stability
 - MHD “spectroscopy”
 - Stochastic boundary for pedestal control

RWM orals: GO1.002–3 (Tuesday PM)
RWM posters: QP1.027–37 (Thursday AM)