CURRENT PROFILE CONTROL VIA ACTIVE T_e CONTROL IN DIII-D

by M.R. Wade

Presented at the 44th Annual Meeting of the Division of Plasma Physics Orlando, Florida

November 11-14, 2002

T_e FEEDBACK IS MOST EFFECTIVE MEANS OF CONTROLLING CURRENT PROFILE DURING THE CURRENT RAMP

• Current density consists of inductive and non-inductive parts:

$$J = J_{Ohm} + J_{non-ind}$$

$$J_{Ohm} = \sigma E_{\parallel} \qquad \qquad J_{non-ind} = J_{BOOT} + J_{ECCD} + J_{NBCD} + \dots$$

- Non-inductive sources are either small or inefficient at low β or low T_e \Rightarrow can't be used early in current ramp
- Ohmic current evolution governed by

$$\frac{\partial E_{\parallel}}{\partial t} = \frac{1}{\mu_0 \sigma} \nabla^2 E_{\parallel} \qquad \text{where} \qquad \sigma \propto \frac{T_e^{3/2}}{Z_{eff}}$$

- Without external intervention, $E_{||}$ penetrates rapidly resulting in $q_0 \cong 1$ at end of current ramp
- Controlling T_e allows a direct, reliable means for controlling current profile evolution

ACTIVE T_e CONTROL MADE POSSIBLE BY UPGRADES TO DIII-D ECH SYSTEMS, PLASMA CONTROL SYSTEM, AND ECE DIAGNOSTIC

FINE CONTROL OF T_e EVOLUTION HAS BEEN DEMONSTRATED

STUDIES SHOW THAT SYSTEMATICALLY INCREASING T_e results in less current penetration

$\begin{array}{l} \mbox{MEASURED } \mathsf{E}_{||} \mbox{ EVOLUTION CONSISTENT} \\ \mbox{WITH NEOCLASSICAL RESISTIVITY} \end{array}$

USING T_e FEEDBACK, SIMILAR CURRENT PROFILE EVOLUTION PRODUCED BY VARIETY OF ACTUATORS

T_e FEEDBACK ALLOWS DECOUPLING OF CURRENT PROFILE AND EVOLUTION FROM PLASMA DENSITY

- Difference due to reduced bootstrap current at lower density
- Benefit: Reduced gas fueling during Ip ramp leads to less wall fueling and lower H–mode density

CHANGING ECH DEPOSITION LOCATIONS ALTERS CURRENT PROFILE EVOLUTION

• As expected, higher central T_e leads to more inverted q profile

- Active T_e control has been demonstrated on DIII–D. Made possible by upgrades to several systems
 - Plasma Control System
 - ECH
 - ECE Diagnostic
- Systematic variation in T_e during current ramp shown to slow current penetration
 - Measured E_{||} evolution agrees with that expected from neoclassical resistivity
- Similar q profilles at end of current ramp can be produced in wide variety of conditions and with different actuators
 - Opens up many new possibilities for Advanced Tokamak research

292-02/MRW/ci