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A NEW TECHNIQUE TO SOLVE SYSTEMS OF DIFFERENTIAL
EQUATIONS WITH SINGULAR SOLUTIONS CAN BE SUCCESSFULLY 

APPLIED TO SOLVE THE RESISTIVE INNER LAYER PROBLEM 

ADT APS 2002

● New numerical technique originally developed for regular singular points

● Code can reproduce previous results (Glasser, Jardin, Tesuaro)

⇒  Also works with irregular singular points arising in inner layer problem 

—   New technique is applicable to an extended range in parameters 
—   Excellent agreement over full range of parameters

—   Extracts out the dominant singular behavior and solves for remainder

● New method transforms singular solutions into finite solutions:

—   Extended here to systems of coupled equations for inner layer problem

—   Boundary conditions applied naturally to exclude exponential singular solutions

● Code is applied to detailed study model of Greene and Miller with nonuniform density

—   Significant divergence of results from uniform inertia at high growth rates:
—   Nonuniform inertia has little effect for low growth rates

⇒  Results depend on the inertia profile
⇒  New poles appear in interchange parity matching data for some inertia profiles
⇒  Stationary points appear for tearing parity growth rates where ∆ is insensitive
      to MHD parameters over a range of growth rates

⇒   Retains exponentially decaying and Frobenius solutions and extracts
       interchange and tearing parity matching data ∆+ -and ∆



INNER LAYER EQUATIONS FOR RESISTIVE PLASMA AND FINITE β
GENERALIZED TO ARBITRARY DENSITY PROFILE

● Inner layer equations for the perturbed flux Ψ, the displacement Ξ, and the
 perturbed current density Γ: (Glasser Jardin, Tesauro, Phys. Fluids, 27, 1225, (1984)):
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Γ

Generalized to include varying mass density profile ρ
⇒   Inertia profile varies across inner layer

E, F, G, H, K   = Constants
     (from outer region)
Q                        = Scaled Growth Rate

DR                      =  E + F + H 2

DI                       =  DR − (1/2 − H) 2



TRANSFORMATION TO FINITE UNIT INTERVAL YIELDS EQUATION
WITH ONE IRREGULAR SINGULAR POINT AT MATCHING POINT

● In the limit as η -> 0 the parameter X0 -> 0:
⇒   x varies from 0 (resonant surface) to       (matching point)

d
dt
_ Y + υ _ Yµ =0
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● Transform: x =  (1 - t)

⇒   t varies from 0 (matching point) to 1 (resonant surface)
t

● Transformed coupled equations are system of ordinary homogeneous
 differential equations:

(( t2 d
dt
_ Yd

dt
_

t
2

1

● The point t = 0 is an irregular singular point

x = (V - V ) / X
 0   0   0  X = (ρ M η <B > ) / α Λ<B /|  ψ| > )∆2 2 2 2 2 22 1/6

● Variable x represents volume distance from resonant surface scaled to X0:

2

η = resistivity

⇒   General solutions cannot be expressed solely as Frobenius series

8



GENERAL SOLUTION IS A LINEAR COMBINATION OF FROBENIUS
AND DIVERGENT AND CONVERGENT EXPONENTIAL SOLUTIONS

● Asymptotic behavior as  x ->       or t -> 0:
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⇒   Odd:  Ψ' (1)  =  Ξ  (1)  =  Γ (1)  = 0

● Boundary conditions:

● Inner layer equation is a sixth order system for the perturbed flux Ψ,
 the displacement Ξ and the perturbed current density Γ:

⇒   Six linearly independent solutions:  Y  =  Σα iTi (x)   =  Σα iTi (t)

8

T1(2) (x)  = exp{ +x2/(2Q1/2) } xs+(-) x S1(2) (x)

T3(4) (x)  =                                xp+(-) x S3(4) (x)

T5(6) (x)  = exp{ -x2/(2Q1/2) } xs+(-) x S5(6) (x)

(Divergent Exponential)

(Convergent Exponential)

(Frobenius)

s+(-)  = s+(-)(E,F,G,H,K,Q) p+(-)  = -1/2  +(-) µ ( µ = ( -DI)
1/2 )

—   Solution Parity about resonant surface t = 1:
 Even:  Ψ  (1)  =  Ξ' (1)  =  Γ' (1)  = 0

—   Divergent Exponential solutions T1(2) eliminated:

—   Homogeneity

⇒   α 1  =  α 2 = 0 

⇒   Choose one α j  = 1



NEW ALGORITHM TRANSFORMS GENERAL SOLUTION INTO
FINITE SOLUTION BY EXTRACTING REMAINING DOMINANT

LARGE FROBENIUS SOLUTION AND SOLVING FOR REMAINDER   
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● Divergent exponential solution removed from general solution by boundary conditions

● Final homogeneous boundary condition:  Choose α3  =  1

Y  = P Z P = ( (0

0
0

0
0

0

p11

p33

p22

T3 (x)  =   x−1/2 + µ x S3 (x)

S3 (x)=  ( x + γ1 / x   + ...
 1 + γ2 / x2 + ...
 1 + γ3 / x2 + ...(

⇒  Remaining dominant solution is the large Frobenius solution T3

New algorithm developed for equations with regular singular
 points can be applied to this problem with an irregular singular point

p11  11  =   =   x+1/2 + µ+ 1/2 +  µ

● Transformation extracts dominant Frobenius solution T3:

⇒

p22  22  =   =   x−1/2 + µ−1/2 +  µ

p33  33  =   =   x−1/2 + µ−1/2 +  µ
⇒}

( (Ψ
Ξ
Γ

∼
∼
∼= P 

}x x �> > 

8

(t t �> >  0) ) 



NEW SYSTEM OF EQUATIONS CAN BE SOLVED BY STANDARD
FINITE DIFFERENCE OR FINITE ELEMENT METHODS 
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● Obtain an ordinary homogeneous system of equations for Z over the unit interval:

● All terms are finite but require care in numerical evaluation to avoid cancelling
 infinite terms
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● Boundary conditions:

⇒  Ψ  (0)  = Ξ  (0)  = Γ  (0)  =  1~~ ~
—   Dirichlet boundary conditions at the left edge (matching point):

⇒  Ψ '  (1)  = Ξ  (1)  = Γ  (1)  =  0
~~ ~

—   Parity conditions at the right edge (rational surface):

Odd  parity:

⇒  Ψ   (1)  = Ξ' (1)  = Γ' (1)  =  0
~~ ~

Even parity:



ACCURATE EXTRACTION OF LARGE AND SMALL FROBENIUS
SOLUTIONS FROM SPECIFIC SOLUTION IS NONTRIVIAL
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● TWIST-IR code numerically computes the complete solution by finite differences

● Complete solution contains large and small Frobenius solutions T3(4) plus
 the two convergent exponential solutions T5(6):

⇒  Dispersion relation for growth rate Q: 2 x 2  matrix equation   D(Q)  = D'

 ∆+(-)   =  α3/α4               for even (+) and odd (-) parity solutions

— D(Q) is diagonal with elements corresponding to the ratio of the leading coefficients
 of the large and small Frobenius solution components from the inner layer:

—   Elements of D'  from the external inertia-free region:

 Frobenius expansion coefficients need to be extracted accurately to obtainFrobenius expansion coefficients need to be extracted accurately to obtain
 the matching data D for matching to outer region solution data Dthe matching data D for matching to outer region solution data D'

⇒

—   Transformed linearly independent solutions to be extracted:

G1(x)  = P T3(x)  

G2(x)  = P T4(x)  

 = P x−1/2 + µ x S3(x) = ( x + γ1 / x   + ...
 1 + γ2 / x 2  + ...
 1 + γ3 / x2  + ...(

 = P x−1/2 − µ x S4(x) = x−2µ
x ( x + δ1 / x   + ...

 1 + δ2 / x2  + ...
 1 + δ3 / x2  + ...(

—   Similarly: G3(x)  = P T5(x) and G4(x)  = P T6(x)



ALGORITHM FOR EXTRACTING MATCHING DATA REQUIRES 
FINDING FOUR LINEARLY INDEPENDENT SOLUTIONS 
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● Numerical solution solves for four linearly independent solutions U1, U2, U3, U4:

⇒

—   Independent boundary
 conditions at the
 rational surface:

U1(1) = ( (0
0 U2(1) = ( (1

0
0 U3(1) = ( (1

0

0
U4(1) = ( (1

0
0

0

—   All with the normalization
 condition at the matching
 point:

Uk(0) = 1 =( (1
1
1

k = 1, 2, 3, 4

● Each is a linear combination of the four solutions G1, G2, G3, and G4:

=( (( (U2
U3
U4

U1

1
1
1

1

ω12
ω22
ω32
ω42

ω13ω23
ω33
ω43

ω14
ω24
ω34ω44

( (G2
G3
G4

G1

● Exclude G1 from U2, U3, and U4 by subtracting U1:
⇒  U2   =  U2 - U1    =  U2 - G1      - ω12 G2                     - ω13 G3                 - ω14 G4 
        =               (ω22 - ω12)  G2  +  (ω23 - ω13) G3  +  (ω24 - ω14) G4

⇒  U2 is now dominated by the small Frobenius solution G2:

∼

∼

● Renormalize the Uk by ω22 - ω12: ⇒
(ω22 - ω12)(ω23 - ω13) (ω24 - ω14)ϖ23 = / ϖ24 = (ω22 - ω12)/

W2   =     G2 + ϖ23  G3 + ϖ24 G4

~



NUMERICAL ALGORITHM FOR EXTRACTING MATCHING DATA
IS ACCURATE FOR ALL CASES OF REAL INTEREST

—   In the limit as ε vanishes, this becomes asymptotically correct since the difference
 between G2 and W2 is proportional to G3 and G4 and vanishes faster than G2

ϖk2
lim
ε -> 0

<Wk G2>ε
<W2

2>ε
= k = 3, 4lim

ε -> 0
<Wk W2>ε
<W2

2>ε
∼

● Exclude  G2, from W3, and  W4,  by subtracting ϖk2W2, taking ϖk2 as the scalar product
 between G2 and each Wk, (k = 3, 4), averaged over a neighborhood ε of t = 0 (x ->     ):8

_

● Exclude  G2, from W1,  by subtracting ϖ12W2, with ϖ12 defined as:

ϖ12
lim
ε -> 0

<W1 G2>ε − <G1 G2>ε
<W2

2>ε
= _{ } lim

ε -> 0
<W1 W2>ε − <1 W2>ε

<W2
2>ε

_{ }∼

—   The expression on the left is also asymptotically correct since W1 - G1 has leading
 term proportional to G2  and the remaining terms, proportional to G3 and G4 and
 vanish faster than G2 
—   The expression on the left is  is accurate except when µ is an integer and the
 large and small Frobenius series for G1 and G2 are no longer linearly independent

_
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● New solutions labeled     Vk = Wk − ϖk2W2     (k = 1,3,4)      and     V2 = W2



Vk ARE SIMPLY CALCULATED FROM THE ORIGINAL SOLUTIONS
AND EQUAL THE DESIRED SOLUTIONS Gk TO LEADING ORDER

= ( (1
1 ϖ13 − ϖ12ϖ23ϖ23

ϖ33 − ϖ32ϖ23
ϖ43 − ϖ42ϖ23

ϖ14 − ϖ12ϖ24
ϖ24

ϖ34 − ϖ32ϖ23
ϖ44 − ϖ42ϖ23

( (G2
G3
G4

G1

● New solutions are related to the numerical solutions Uk through known coefficients :

—   The ϖk2 relating the Vk and Uk are known from the inner products and (ω22 - ω12)
 is known from the leading term of U2   =  U2 - U1:

● The boundary
 conditions on
 the Vk are now:
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=( (V2
V3
V4

V1 ( (W2
W3 − ϖ32 W2
W4 − ϖ42 W2

W1 − ϖ12 W2

0
0

0
0
0
0

= ( ((U2 − U1) / (ω22 - ω12)
(U3 − U1) − ϖ32 (U2−U1 )
(U4 − U1) − ϖ42 (U2−U1 )

 U1              − ϖ12(U2−U1 )

V1 = G1 + O(G3,G4)
V2 = G2 + O(G3,G4)
V3 =         O(G3,G4)
V4 =         O(G3,G4)  

⇒ {

V1(1) = ( (0
0 V2(1) = ( (1

0
0 V3(1) = ( (1

0

0
V4(1) = ( (1

0
0

0

V1(0) = 1 =( (1
1
1 k = 2, 3, 4Vk(0) = 0 =( (0

0
0

( (V2
V3
V4

V1

—   The Vk are also clearly related to the desired solutions Gk:

{



PARTICULAR SOLUTION CAN BE EXPANDED IN TERMS
OF THE LINEARLY INDEPENDENT FUNCTIONS Vk

● The particular solution can now be constructed directly from the solutions Vk:
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⇒  3 conditions and 3 unknowns

⇒ Z  = V1  +  ∆2 V2  +  ∆3 V3  +  ∆4 V4

—   Z  automatically satisfies the boundary condition Z(t = 0) = 1 at the
 matching point since:

V1(0) = 1 V2(0) = V3(0) =V4(0) = 0

Z(1) = 
~

= ( ( ( (.
0
0

Ψ (1)
Ξ (1)
Γ (1)

~
~

~( (Ψ ' (1)
Ξ' (1)
Γ' (1)

~
~Z' (1) = = ( (.

0

.
and

odd
parity( (

Z(1) = 
~

= ( ( ( (

.
0
0

Ψ (1)
Ξ (1)
Γ (1)

~
~

~( (Ψ ' (1)
Ξ' (1)
Γ' (1)

~
~Z' (1) = = ( (.

0

.

and
even
parity( (

or

● The ∆k are chosen to satisfy the particular parity boundary conditions at the
 resonant surface t = 1:



ALGORITHM FINDS MATCHING DATA ∆+ AND ∆- DIRECTLY FROM ∆2 

● V1 ~ G1 and V2 ~ G2 up to terms of the order of the two convergent exponential
 solutions G3 and G4
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∆2  =  

—   Even for the important pressureless case with µ = 1/2

odd
parity( (

● Back transformation:
 and inverse variable transformation : 

1 / ∆- 

1 / ∆+ { even
parity( (

● Numerical algorithm for computing both Y and the matching data ∆+ and  ∆- works
 well for all parameters:

—   Except for the cases when µ is close to an integer and the large and small
 Frobenius series for G1 and G2, as given, are degenerate:

⇒

⇒ Solution for Y can still be obtained by solving for Z with the physical
boundary conditions but ∆-(+) are not easily extracted

—   Even for µ < 1/2  and µ > 1

Y    =   P Z ⇒  Solution eigenvector Y
t      ->    x



BENCHMARK STUDY FOR CONSTANT DENSITY PROFILE SHOWS
EXCELLENT AGREEMENT WITH PREVIOUSLY PUBLISHED RESULTS

●  Comparison of TWIST-IR results with  the DELTA-R code
  (Glasser Jardin and Tesauro, Phys. Fluids 27, 1225, (1984))
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GREENE AND MILLER MODEL FOR NONUNIFORM DENSITY ACROSS
INNER LAYER INTENDED TO RESOLVE INCONSISTENCIES IN

MATCHING TO INERTIA-FREE EXTERNAL SOLUTION

●  Density taken to vary smoothly across inner layer and vanishing as x ->      (t -> 0)
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ρ1 = 1.0
k   = 3.0
n  = 1 Three density profiles

taken to test effect of
ρ profile across whole 

range of parameters
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ρ(t) = ρ1 + (1−t)2 x (k tn − 2ρ1t − ρ1)
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k   = 1.0
n  = 1
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k   = 10.0
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●  Density taken as:  ρ = {  |x| < xc1

0 |x| > xc

(Greene and Miller
Phys. Plasmas, 2, 1236, (1995))

⇒   Matching to outer region at x ->      is performed where inertia is zero
on both sides of the matching point to avoid inconsistency 

8 

matching
point

resonant
surface
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ρ



DENSITY PROFILES NORMALIZED TO FIXED TOTAL MASS IN INNER
LAYER TO ISOLATE PROFILE FROM TOTAL DENSITY VARIATION 

● To compare different density profiles total mass must be the same to obtain same
 effective total inertia

8 
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—   For constant ρ = ρ1, with x = (V - V0) / X0, total mass from
 x = −x1 to x = x1 is:

M(x1)   = 2X0S0

x1

ρ(x)dx   = M1   = 2X0ρ1x1

—   Require that x1remains large (x1 >> X0) but finite:  Otherwise M1 ->

● To scale to same total mass M1:  ⇒   ρ(x)  =  M1ρ(x)/ M(x1)

—   Then the limit x1−>     can legitimately be taken8 

Study effect of varying M1 (effectively ρ1) and varying ρ(x) profile
independently

Both can have important qualitative as well as quantitative effects



VARYING DENSITY PROFILE HAS SMALL EFFECT ON
BOTH ∆+ AND ∆- EXCEPT AT LARGE Q
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∆- has a pole at Q ~ 1 for all three profiles in agreement with the constant
density result and in contrast to the Glasser Greene Johnson formula⇒

ρ1 = 1
k   = 3
n   = 1 }

● Three different profiles at constant M1 normalized to Glasser Greene Johnson result:

ρ1 = 1
k   = 10
n   = 1 } ρ1 = 10

k   = 1
n   = 1 }



VARYING TOTAL INERTIA HAS A SIGNIFICANT EFFECT ON
 ∆- AT ALL Q AND SHIFTS THE POLE POSITION  

● Density profile ρ1 = 1, k = 1, n = 1: 
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∆ –1

–

 ∆- pole position is roughly inversely proportional to M 
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unchanged with varying total inertia but the
values change considerably:



NEW POLES IN  ∆+ APPEAR  WITH INCREASED TOTAL INERTIA 

● For density profile ρ1 = 1, k = 1, n = 1, the ∆+
-1 curves remain monotonically

 decreasing for M < 10

ADT APS 2002

∆ –1

+

 New ∆+ poles separate in Q as M increases:
Rightmost pole moves quickly to Q =    

Leftmost pole moves to lower Q 
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-1 begins to increase at intermediate Q

—   For M > 20 a new pair of poles in ∆+ (zeros of ∆+
-1) appears at high Q

 ⇒  

8 

New  physics enters
with variable density
profile:
Is it real or not ?

⇒



STATIONARY POINTS IN  ∆-(Q) APPEAR  FOR VARYING
EQUILIBRIUM PARAMETER E 

● Dependence of ∆-
-1 on Q for varying E shows a pair of stationary points at large Q

 where ∆-
-1(Q) has no dependence on E to a high degree:
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 —   Density profile ρ1 = 1, k = 1, n = 1



STATIONARY POINTS IN  ∆-(Q) ALSO APPEAR  FOR
VARYING EQUILIBRIUM PARAMETER H 

● Dependence of ∆-
-1 on Q for varying H shows a single stationary point at large Q

 where ∆-
-1(Q) has no dependence on H to high accuracy:
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 Presence of these stationary points is not understood:
Solution matching data is invariant to H and E 
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INTERCHANGE PARITY MATCHING DATA ∆+(Q) DOES NOT
EXHIBIT STATIONARY POINTS 

● Dependence of ∆+
-1 on Q for varying H shows simple monotonic behavior with

 no stationary points
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 Both E and the Mercier parameter µ
 vary monotonically with increasing H 
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 —   Density profile ρ1 = 1, k = 1, n = 1



GENERAL NUMERICAL TECHNIQUE DEVELOPED TO SOLVE FOR
SINGULAR SOLUTIONS ALSO APPLIES TO THE RESISTIVE MHD
 INNER LAYER PROBLEM WITH IRREGULAR SINGULAR POINTS  

● Technique is implemented in TWIST-IR code and is robust and accurate and
 reproduces previously published results:
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 Full significance of these features
is not yet well understood

—   TWIST-IR reproduces dependence of ∆- and ∆+ on gnormalized growth rate Q
 over a wide range of equilibrium parameters
—   TWIST-IR can be applied to Q values up to two orders of magnitude larger than
 was previously possible  

● TWIST-IR code used to investigate implications of variable density model of
 Greene and Miller: 

—   Dependence of matching data on profile variations and total inertia needs to be
 separated and treated carefully

⇒ New poles can appear in ∆+ at large Q 
—   Profile has small effect on matching data curves but varying total inertia
 has a large effect at large Q: 

● Stationary points are exhibited at large Q where ∆-(Q) is invariant with variations
 in certain equilibrium data  

—   Two stationary points in ∆- with varying E,  with insensitivity to Q in between
—   A single stationary point in ∆- with respect to varying H


