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OPTIMIZATION OF THE TOKAMAK CONCEPT
LEADS TO AN ATTRACTIVE FUSION POWER PLANT

●  The U.S. ARIES system study

●  Optimization of the tokamak
concept is known as the
Advanced Tokamak program

●  Attractive features

—   Reduced size
Higher pressure, reduced heat loss

—   Improved economics
—   Improved power cycle

Low Activation
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Power cycle              Pulsed  Steady-state

COE ¢/kWhr              ~13         ~7

Major radius (m)           8           5

Conventional Optimized
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THE GOAL OF THE ADVANCED TOKAMAK PROGRAM
IS TO OPTIMIZE THE TOKAMAK CONCEPT FOR
ATTRACTIVE FUSION ENERGY PRODUCTION

● Steady state
— High self-generated bootstrap current

● Compact (smaller)
— Improved confinement (reduced heat loss)

— Discovering the Ultimate Potential of the Tokamak —

Key Elements

Fusion Ignition Requirement  
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H = τE/τconv Size
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● High power density
— Improved stability

PFus ∝  (n T) 2 Vol  ∝  β2 B4  Vol

3×1021 m–3 keV s  < n Ti τ ∝  (H a B κ) 2 
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THE CONFINING MAGNETIC FIELD IN A TOKAMAK
IS PRODUCED BY CURRENTS IN EXTERNAL COILS

PLUS A CURRENT IN THE PLASMA
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THE PLASMA'S SELF-GENERATED BOOTSTRAP CURRENT IS THE BASIS
FOR MODERN APPROACHES TO STEADY-STATE OPERATION

(Kikuchi, PPCF 37 (1995))

● JBS ∝ local pressure gradient

● IBS/ITOT ∝ √a/R βPOL

               ∝ √R/a  q βN

● High bootstrap current is essential
for steady state
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QSS  =  
PFus
PCD

∝ 
1/γCD (ITOT – IBS)

PFus

● Result of conservation of momentum
in toroidal  geometry (neoclassical 
transport  theory)

Decreasing
Pressure



SIMULATIONS PREDICT SELF-CONSISTENT EQUILIBRIA
WITH NEARLY 100% BOOTSTRAP

➞ Steady state with low
recirculating power

●   Off-axis current drive 
to supply missing current
— Provided by high power

microwaves in DIII–D 

●   Other benefits of negative 
central shear profile

— Reduced transport, improved 
confinement

— Improved stability to central
unstable MHD modes 
★  Ballooning
★  Tearing modes
★  Sawteeth
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NEGATIVE CENTRAL SHEAR AND SHEARED E×B FLOW
LEAD TO IMPROVED  CORE CONFINEMENT

●  Key physics

— Measured turbulence reduction is consistent with theoretical prediction

— Negative magnetic shear contributes to  reduced γITG

●  Similar reduction is often observed in other transport channels

★ E×B shearing rate exceeds maximum growth rate of ion temperature gradient mode
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A COMPACT STEADY STATE TOKAMAK
REQUIRES OPERATION AT HIGH βN

● High power density
⇒  high βT

● Large bootstrap fraction
⇒  high βp

● Steady state ⇒  high βN
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Pressure Limit βN ∝  power density ×
bootstrap current

βN  = βT /(I/aB)     εβp
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BROAD PRESSURE PROFILE
AND STRONG SHAPING REQUIRED FOR HIGH BETA
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WALL STABILIZATION GREATLY IMPROVES
ACHIEVABLE STABLE BETA
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● βN ≡ βT/(I/aB)

Ideal Stability, n = 1, GATO
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● βN ~ 6 with wall stabilization
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RESISTIVE WALL MODE STABILIZED BY
ROTATION AND ACTIVE FEEDBACK ON DIII–D

Plasma pressure is stably maintained
 above the conventional pressure limit

●

KEY RESULT

Resistive wall mode is stabilized by
plasma rotation in agreement with theory

●

KEY PHYSICS

Identification of "error field amplification" as
mechanism for rotation slowdown as predicted by theory

●

Reduction of non-axisymmetric error field → continued rotation → stable to
high pressure

●
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—    Up to a factor of two
—    Up to ideal wall limit

⇒    Non-axisymmetric stabilization coils calculated to provide stable operation near
the ideal wall limit with or without rotation
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THE NEXT FRONTIER IS ADVANCED TOKAMAK PHYSICS
IN THE SELF-HEATED BURNING PLASMA REGIME

●  Strong nonlinear coupling amongst fusion alpha particles, pressure driven
current, turbulent transport, MHD stability and boundary behavior

ITER-FEAT
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