## MHD Stability Research in DIII-D

by E.J. Strait and the DIII-D Stability Group

Presented at American Physical Society Meeting Orlando, Florida

NATIONAL FUSION FACILITY SAN DIEGO November 11-15, 2002

291-02/EJS/ci

### **GOALS FOR MHD STABILITY RESEARCH IN DIII-D**

- Establish the scientific basis for understanding and predicting limits to macroscopic stability of toroidal plasmas
- Apply this understanding toward the control and improvement of MHD stability in toroidal plasmas
- Key physics areas
  - Resistive wall mode stability, including stabilization by plasma rotation and feedback control
  - Edge-driven instabilities in plasmas with a large edge pressure gradient and associated bootstrap current
  - Neoclassical tearing modes, including threshold mechanisms and means of active stabilization
  - Non-ideal plasma instabilities such as sawteeth, resistive interchange modes, and fast ion driven instabilities
  - Disruption dynamics and methods of disruption mitigation



## **DIII-D STABILITY STUDIES WILL MAKE USE OF NEW TOOLS**

- Resistive wall modes
  - Internal control coils
- Neoclassical tearing modes
  - 8 gyrotrons with steerable launchers
- Edge pedestal stability
  - Li beam polarimetry measurements of edge current profile
- Fast ion-driven instabilities
  - Fast ion profile diagnostic
- Disruption physics
  - Fast multi-channel bolometry
- Validation of theoretical models
  - Nonlinear MHD codes



#### **DIII–D STABILITY PROGRAM**

|                                   | 2002                                                                                                            | 2003          | 2004                       | 2005                                        | 2006                                                           | 2007              | 2008 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------------------|---------------------------------------------|----------------------------------------------------------------|-------------------|------|
| Stability<br>Theory &<br>Modeling | Nonlinear Initial Value Codes (NIMROD) ————<br>Nonlinear Edge Modeling (BOUT) ——<br>Gyrokinetic Edge Modeling—— |               |                            |                                             |                                                                |                   |      |
|                                   | RWM Feedback Models with Rotation (VALEN)                                                                       |               |                            |                                             |                                                                |                   |      |
| New<br>Diagnostics                | Improved core j(r)<br>Edge j(r) (Li beam)                                                                       |               | Real-time<br>q-profile     | 3-D equilibrium and island physics          |                                                                |                   |      |
|                                   | Fast ion profile                                                                                                |               |                            |                                             |                                                                |                   |      |
| New Control<br>Tools              | 6 gyrotrons<br>FW (<3 MW)                                                                                       |               | High freque<br>control amp | 8 gyrotrons<br>FW (6 MW)<br>ncy<br>blifiers | IS 9 MW EC<br>/) long-puls<br>Counter NBI<br>Edge ergodization |                   |      |
|                                   |                                                                                                                 | Internal (12) | ) control coils            | ontrol coils                                |                                                                | Eage ergodization |      |
|                                   | Disruption predictor                                                                                            |               |                            |                                             |                                                                |                   |      |



# $\begin{array}{l} \text{REDUCED ERROR FIELDS} \Rightarrow \text{SUSTAINED ROTATION} \\ \Rightarrow \text{STABILIZATION OF THE RWM} \\ \Rightarrow \text{RELIABLE OPERATION ABOVE THE NO-WALL LIMIT} \end{array}$



• 
$$\beta_N \leq 2 \beta_N^{no \ wall} \sim \beta_N^{ideal \ wall}$$

- Recent breakthrough: understanding of resonant field amplification
  - By weakly damped RWM
- Feedback control allows "adaptive" reduction of magnetic field asymmetry



184-02/EJS/wj

#### • Interaction with plasma rotation

- Validate models of rotational stabilization
- Critical rotation frequency, rotational drag by RWM
  - ★ New tools for rotation control: rf heating, counter-NBI
  - Develop adaptive magnetic symmetrization for general use
- Feedback control
  - Quantitative validation of feedback models
    - ★ Incorporate effects of rotation in the models
  - Develop multi-sensor RWM detection
  - Test internal coils for improved feedback control
- ⇒ Apply one or both approaches to improve the performance of "Advanced Tokamak" discharges
  - Demonstrate sustained operation at  $\beta_N \ge 5$  high fBS



#### INTERNAL CONTROL COILS WILL BE AN EFFECTIVE TOOL FOR PURSUING ACTIVE AND PASSIVE STABILIZATION OF THE RWM

- Better matching to poloidal error field spectrum
- Active feedback stabilization is calculated to open high beta wall-stabilized regime to plasmas without rotation







## TWO PROTOTYPE RWM CONTROL COILS INSTALLED IN DIII-D





291-01/EJS/jy

## ECCD SUPPRESSION OF m/n = 3/2 NTM ALLOWS $\beta_{N}$ INCREASE



## JET/DIII–D NONDIMENSIONAL MATCH OF (2, 1) NTM CRITICAL $\beta_{\mbox{N}}$



NATIONAL FUSION SAN DIEGO 184–02/EJS/wj

#### **NEOCLASSICAL TEARING MODE PHYSICS**

#### • Understanding of NTM onset physics

- Seeding by RWM, other stationary perturbations
  - ★ Internal control coils
- Possible "classical" destabilization near ideal stability boundary
- Validation of models for NTM damping
- Threshold scaling with plasma size ( $\rho_i/a$ )
  - ★ Comparison with JET, C–Mod
- Damping rate measurements by active MHD spectroscopy (C–Mod antennas, DIII–D control coils)

#### • Active stabilization of NTM

- Improved real-time control methods
  - ★ Real-time q profile, mirror steering
- Multi-mode stabilization by ECCD
- Current profile control
  - ★ ECCD, benign NTMs
- Non-resonant magnetic perturbations
  - ★ Internal control coils allow poloidal mode selection
- Improved analysis and modeling capabilities (PEST-III, MARS, NIMROD)
- ⇒ Apply these approaches to improve the performance of "Advanced Tokamak" discharges





184-02/EJS/wj

#### INTERMEDIATE n PEELING-BALLOONING MODES ARE A SOLID CANDIDATE FOR ELMs: CASE STUDY IN DIII-D



- DIII-D shot analyzed using experimental reconstruction of equilibria
- n=10 growth rate attains significant value just before ELM observed
- Edge current remains an important uncertainty  $\Rightarrow$  Li beam diagnostic





- Validation of the role of edge current density
  - Li beam polarimetry diagnostic
- Mode coupling and ELM depth
- Physics of H–mode discharges with small ELMs or no ELMs
  - Type II ELMs
  - Quiescent H–mode
    - ★ DIII–D edge harmonic oscillation
    - ★ C-Mod quasi-coherent mode
  - Active edge control
    - **★** Ergodic layer, shaping, impurity injection
- Linear and nonlinear edge modeling (ELITE, BOUT, gyrokinetic modeling)
- ⇒ Develop regimes of tolerable ELMs that can be extrapolated to larger devices



#### LITHIUM BEAM POLARIMETRY WILL PROVIDE HIGH RESOLUTION MEASUREMENTS OF EDGE J(r)





### EXPECTED REDUCTION IN UNDERTAINTY IN j<sub>edge</sub> FROM INCLUSION OF LI BEAM DATA AND REDUCTION IN MAGNETIC DIAGNOSTIC ERROR





## ALFVEN MODE ACTIVITY CORRELATES WITH LOSS OF FAST IONS

#### • Measured neutron rate compared to TRANSP calculation





#### NSTX/DIII-D COMPARISON ISOLATES TOROIDICITY EFFECTS ON ALFVEN EIGNMODES



- NSTX and DIII–D can match shape, toroidal field, and neutral beam energy
  - $\Rightarrow \text{Can match all Alfven} \\ \text{mode parameters} \\ (V_f/V_A, \text{ for example})$
- Goal: compare stability thresholds and mode structure with modeling predictions
  - Most unstable mode number
  - Multiple unstable modes
  - Kinetic effects
- Critical physics for next-step device



## **FAST ION PHYSICS**

- Validation of models for Alfvén eigenmodes and energetic particle modes
  - Linear stability
  - Nonlinear saturation
  - Fast ion transport
  - Transition to "energetic particle mode"
- ⇒ Develop physics basis for extrapolation to a burning plasma
- Key need is fast ion profile measurement. Will select from:
  - Fast neutral particle analyzers
  - Neutron collimator
  - 3 MeV proton camera
  - Collective scattering





#### CONTROLLED PLASMA TERMINATION WITH HIGH PRESSURE NOBLE GAS INJECTION



NATIONAL FUSION FACILITY SAN DIEGO

- Rapid uncontrolled plasma termination (disruption) is source of concern for large tokamaks (ITER)
  - Thermal stress
  - Mechanical stress
  - Fast electrons (runaways)
- Simple high pressure gas Jet pre-emptively terminates plasma
  - Mitigates disruption concern
    - ★ Low thermal loads 99% radiation
    - Low mechanical stress reduced "halo" currents
    - ★ No fast electrons

- Validate models for mitigation process
  - Gas jet penetration
    - **★** Fast sequential visible camera (100 µs)
  - Radiative dissipation
    - ★ Fast multi-chord bolometer (DISRAD-II)
  - Physics of runaway electron suppression
    - ★ Collaboration with JET
  - Comparison of low-Z gas jet (DIII–D) and high-Z pellet (C–Mod)
- Develop reliable real-time disruption detection and trigger
  - Vertical instability
  - Mode locking
  - Density limit
- ⇒ Develop mitigation techniques that can be extrapolated to a burning plasma experiment



#### REAL-TIME TRIGGERING OF HIGH PRESSURE GAS JET FOR DISRUPTION MITIGATION

- Earlier detection of vertical displacement improves effectiveness
  - Greater radiative dissipation
  - Reduced halo current





#### DIII-D EXPERIMENTS AND MODELING WILL EXPLORE PHYSICS BEYOND IDEAL, AXISYMMETRIC MHD

#### Plasma rotation

- Key element of RWM stability
- Tools include rf heating, counter-NBI, non-axisymmetric coils

#### • Extended MHD

- Dissipative effects reconnection physics, resistive interchange
- Neoclassical effects NTM threshold and saturation
- Two-fluid effects edge stability
- Kinetic effects fast ion modes, sawtooth stabilization

#### • 3-D effects

- Interaction of finite-amplitude islands
- Plasma response to non-axisymmetric walls and coils
- Fast ion transport by MHD modes
- $\Rightarrow$  Validation of more realistic stability models will allow extrapolation to
  - Burning plasma experiments
    - Non-tokamak (and non-fusion) plasmas



## NIMROD MODELING OF DIII-D PLASMAS IS IN PROGRESS

- Neoclassical tearing mode stability, and ECCD suppression
- NTM suppression by nonresonant helical perturbations
- Nonlinear evolution of tearing modes near ideal stability boundary
- Physics of the edge harmonic oscillation in quiescent H–mode plasmas





291–01/EJS/wj

#### THE DIII-D LONG-RANGE PROGRAM ADDRESSES KEY ISSUES OF MHD STABILITY

- Physics of interaction of a rotating plasma with a resistive wall
- Validation of classical and neoclassical tearing mode theory
- Stability properties of transport barriers
- Nonlinear coupling of modes (core, edge)
- Tests of m=1 reconnection and resistive interchange theories
- Interaction of fast ions with MHD modes
- Physics of disruptions and disruption mitigation
- Validation of nonlinear and extended MHD models
- Improved stability through profile control and active stabilization

This program will develop the scientific basis needed for

- Control and sustainment of high performance tokamak plasmas
- Predictive capabilities for other devices

