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Pedestal & ELMs Key to Plasma Performance
� Both theory and experiment indicate a strong dependence of core confinement, and

therefore Q on the pedestal height (pped, Tped)

� ELM characteristics strongly impact divertor and wall heat load constraints
(large Type I ELMs may not be tolerable in Burning Plasma devices)

�Goal is predictive understanding of physics controlling pedestal height and ELM
characteristics ⇒ combination of high pedestal and tolerable ELMs
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Pedestal Stability Studies Including Current Lead to
New Understanding of  ELMs and Pedestal Physics

� Model Verified Against Experiment in Two Ways
– Direct comparisons to experiment
– Use of model equilibria to assess pedestal limits in current and future devices

� Summary and Future Work
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� Important role of current, as well as
pressure, in pedestal MHD stability

� Peeling-ballooning mode stability leads to
model of ELMs and pedestal constraints
– Efficient tool (ELITE) calculates

quantitative pedestal stability limits
and mode structures

pedestal



Peeling-Ballooning Stability Picture

� Two Principal MHD Instabilities in the Pedestal
– Ballooning Modes (pressure driven)
– External Kink or “Peeling Modes” (current driven)

� Bootstrap Current Plays a Complex Role
– Drives Peeling Modes
– Opens 2nd stability access to ballooning modes
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Peeling-Ballooning Stability Picture

� Two Principal MHD Instabilities in the Pedestal
– Ballooning Modes (pressure driven)
– External Kink or “Peeling Modes” (current driven)

� Bootstrap Current Plays a Complex Role
– Drives Peeling Modes
– Opens 2nd stability access to ballooning modes

� Peeling and Ballooning modes couple at finite n

� Intermediate wavelength coupled peeling-ballooning mode often most unstable
– High n’s second stable or FLR stabilized, low n’s stabilized by line bending
– High-n ballooning alone not sufficient

� Quantitative stability limits depend sensitively on plasma shape, collisionality,
pedestal width, q, etc., and must be tested at multiple wavelengths
– Need an efficient tool
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ELITE is a 2D eigenvalue code, based on ideal MHD (amenable to extensions):
-Generalization of ballooning theory:

1) incorporate surface terms which drive peeling modes
2) retain first two orders in 1/n  (treats intermediate n>~5)

-Makes use of poloidal harmonic localization for efficiency
-Successfully benchmarked against GATO and MISHKA
[H.R. Wilson, P.B. Snyder et al Phys Plas 9 1277 (2002); P.B. Snyder, H.R. Wilson et al Phys Plas 9 2037 (2002).]

ELITE is a Highly Efficient 2D MHD Code for n>~5
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ELITE allows quantitative prediction of ELMs, pedestal constraints

� DIII-D model equilibria, self-consistent collisionless bootstrap current.  Nominal (zero
current) n→∞ ballooning limit of p’=3.1, exceeded in expt by factors of 2-3, in
agreement with calculated n=10 limit

� Demonstrates existence of “second stability” in shaped nonlocal equilibria 

� Good agreement between GATO and ELITE in region of overlap (4<n<10)

� Modify current by varying cboot (Jboot=cboot*Jhirshman): Trends in p’ limit and predicted
limiting n and ELM size with Jped agree with observations 
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Edge current density increases with edge temperature (Ohmic+collisional bootstrap)

Can consider stability diagram in βN-Tped space

MHD stability explicitly limits steady state Tped, (for a given width)

Higher triangularity decouples peeling and ballooning modes, allows higher 
temperature pedestal

Peeling-ballooning modes provide a constraint on
the edge temperature pedestal, as well as β
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Different Types of ELM Cycles can be Envisioned

� ELMs triggered by peeling-ballooning modes, ELM size correlates to depth of most unstable
mode and to location in parameter space

� Pressure rises up on transport time scale between ELMs, current rises to steady state value more
slowly

� Predict changeover in ELM behavior when Jped<Jpeel ⇒ strong density and shape dependence
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Verification of Peeling-Ballooning Mode Model for ELMs:
Case Study in DIII-D

� n=10 growth rate attains significant value just before ELM observed

� Predicted radial mode width consistent with ELM affected area
– Both extend beyond pedestal

� Mode localized on outboard side, consistent with observations in
divertor balance experiments
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Observed Variation with Density Consistent with Model

� Three DIII-D shots with varying density studied

� In all 3 cases, peeling-ballooning modes are unstable with significant growth
rate just before ELM, even though pedestal height is decreasing with density

– Consistent with peeling-ballooning modes as ELM trigger
� As density increases, most unstable mode moves to shorter wavelengths, and

radial width of mode decreases

– Due to decreasing bootstrap current and narrowing pedestal
– Expect smaller ELMs at high density, as observed
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Direct Comparisons Consistent on Multiple Tokamaks

[D. Mossessian KI2.005]

JAERI

Grassy
ELMs

Giant
ELMs

� JT-60U
-Peeling ballooning modes unstable before ELMs
-Broader mode structures in “Giant ELM cases”

JT-60U
32511

JT-60U
32358 [See T. Oikawa QP1.063]

� Alcator C-Mod
– ELM-free and EDA shots are peeling-

ballooning stable
– Peeling-Ballooning modes consistently

unstable just before ELMs
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Studies of Model Equilibria Useful for Predicting Trends in Present
and Future Devices

� Direct experimental comparisons rigorously test the model, but for prediction of pedestal
trends it is useful to conduct pedestal stability analysis on series of model equilibria
– Compare to observed trends on present devices
– Predict pedestal height as a function of width, shape, etc in future devices

∆

� Model equilibria, match global parameters (Bt, Ip,
R, a, κ, δ, <ne>)

� Current profile aligned to Sauter collisional
bootstrap model in the pedestal

� Width (∆) is an input: at each ∆, Tped is increased
until n=8-40 stability bounds are crossed
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� Trends with density and triangularity calculated using series of model equilibria, and compared to database
– Inputs are Bt, Ip, R, a, κ, δ, <ne>, ∆

� Strong increase in pedestal height with triangularity is due to opening of second stability access

– Bootstrap current plays a key role here.  Without it (dashed line) second stability is
not accessed at high n and strong δ trend not predicted

� Trends with both density and triangularity accurately reproduced: indicates both that pedestal is MHD limited
and that model equilibria are sufficiently accurate (also find agreement on C-mod)

–  encourages use of this method as a predictive tool for future devices NATIONAL FUSION FACILITY
S A N  D I E G O
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Prediction of ITER Pedestal Constraints

� High n modes limiting at narrow widths, go second stable at wider widths

� Pedestal height increases with width, but not linearly (~ ∆ 2/3)

� Reaches adequate pedestal height for predicted high performance in observed range of ∆/a

– Increase height by optimizing δ, ne, including ω* effects
– Scaling of pedestal width remains a key uncertainty [Osborne CT-3]
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ELM simulated in BOUT has peeling-ballooning structure

� Additional physics effects (eg ω* , sheared rotation) need to be considered

� Nonlinear BOUT code with current used to simulate peeling-ballooning modes

– Basic picture of instability remains intact
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Rotation and non-ideal effects potentially important
� Diamagnetic stabilization identified by several authors

– Rogers and Drake ‘99 found ω* effects significantly stabilizing for ballooning modes -> alternative to 2nd
stability to explain β> βc

– Hastie, Catto, Ramos ‘00 found strong radial variation of ω* diminishes its stabilizing impact.  Huysmans ‘01
work with Mishka also suggests reduced impact.

– Can make simple estimates based on [Roberts ‘62]:
– Expect reduced ELM sizes for ω*/2>γ
– Stronger effect on larger n
– Expect delayed appearance or even elimination of large
     ELMs in some regimes, first mode to appear will be that
     with largest γ/ω*
– Simple model implemented in ELITE:

� Toroidal rotation shear (and Er effects in general) also potentially significant
– Working to include in ELITE

−γ MHD
2 = ω (ω − ω*i)

nqA
ρi
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β > 2 γ MHD
ωA
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Summary
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� Pedestal current plays an important dual role in stability
– Drives peeling, 2nd access for ballooning
– Peeling-Ballooning coupling, intermediate n’s often limiting mode

� New tools (ELITE) allow efficient stability calculation for experimental equilibria over full relevant
spectrum of n

� Model of ELMs and constraints on the pedestal developed based on peeling-ballooning
– Peeling-ballooning modes as ELM trigger, mode structure correlates to ELM depth
– Quantitative prediction of p’,J limits;  Tped limits using self-consistent Jbs
– Finite n modes sensitive to pedestal width as well as gradient

� ELM model in agreement with experiment
– Observed ELM onset consistent with model in multiple tokamaks
– Pedestal and ELM variation with density quantitatively modeled
– Trends with triangularity and collisionality consistent, projections made for burning plasmas

� Nonlinear simulations of the boundary region in progress, impact of current included
– Basic picture of instability remains intact
– Ongoing work: more complete physics picture and dynamical models

� Many open issues: pedestal width, ELM dynamics, connection to SOL & core…


