Theory and Modeling of ELMs and Constraints on the H-Mode Pedestal

P.B. Snyder,¹ H.R. Wilson,² J.R. Ferron,¹ L.L. Lao,¹ A.W. Leonard,¹ D. Mossessian,³ M. Murakami,⁴ T.H. Osborne,¹ A.D. Turnbull,¹ A.J. Webster,² X.Q. Xu⁵

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
²EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon UK
³Massachusetts Institute of Technology PSFC, Cambridge, Massachusetts 02139, USA
⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁵Lawrence Livermore National Laboratory, Livermore, California 94550, USA

44th Annual APS/DPP Meeting
Orlando, Florida, 11-15 November 2002
Both theory and experiment indicate a strong dependence of core confinement, and therefore Q on the pedestal height \((p_{\text{ped}}, T_{\text{ped}}) \).

ELM characteristics strongly impact divertor and wall heat load constraints (large Type I ELMs may not be tolerable in Burning Plasma devices).

Goal is predictive understanding of physics controlling pedestal height and ELM characteristics ⇒ combination of high pedestal and tolerable ELMs.
Pedestal Stability Studies Including Current Lead to New Understanding of ELMs and Pedestal Physics

- Important role of current, as well as pressure, in pedestal MHD stability
- Peeling-ballooning mode stability leads to model of ELMs and pedestal constraints
 - Efficient tool (ELITE) calculates quantitative pedestal stability limits and mode structures

- Model Verified Against Experiment in Two Ways
 - Direct comparisons to experiment
 - Use of model equilibria to assess pedestal limits in current and future devices

- Summary and Future Work

UKAEA Fusion

DIII-D

GENERAL ATOMICS
Peeling-Ballooning Stability Picture

- Two Principal MHD Instabilities in the Pedestal
 - Ballooning Modes (pressure driven)
 - External Kink or “Peeling Modes” (current driven)

- Bootstrap Current Plays a Complex Role
 - Drives Peeling Modes
 - Opens 2nd stability access to ballooning modes
Two Principal MHD Instabilities in the Pedestal
- Ballooning Modes (pressure driven)
- External Kink or “Peeling Modes” (current driven)

Bootstrap Current Plays a Complex Role
- Drives Peeling Modes
- Opens 2nd stability access to ballooning modes

Peeling and Ballooning modes couple at finite \(n \)

Intermediate wavelength coupled peeling-ballooning mode often most unstable
- High \(n \)’s second stable or FLR stabilized, low \(n \)’s stabilized by line bending
- High-\(n \) ballooning alone not sufficient

Quantitative stability limits depend sensitively on plasma shape, collisionality, pedestal width, \(q \), etc., and must be tested at multiple wavelengths
- Need an efficient tool
ELITE is a 2D eigenvalue code, based on ideal MHD (amenable to extensions):

- Generalization of ballooning theory:
 1) incorporate surface terms which drive peeling modes
 2) retain first two orders in $1/n$ (treats intermediate $n>\sim5$)

- Makes use of poloidal harmonic localization for efficiency
- Successfully benchmarked against GATO and MISHKA

[H.R. Wilson, P.B. Snyder et al Phys Plas 9 1277 (2002); P.B. Snyder, H.R. Wilson et al Phys Plas 9 2037 (2002).]
ELITE allows quantitative prediction of ELMs, pedestal constraints

- DIII-D model equilibria, self-consistent collisionless bootstrap current. Nominal (zero current) $n \rightarrow \infty$ ballooning limit of $p'=3.1$, exceeded in expt by factors of 2-3, in agreement with calculated $n=10$ limit.

- Demonstrates existence of “second stability” in shaped nonlocal equilibria.

- Good agreement between GATO and ELITE in region of overlap ($4<n<10$).

- Modify current by varying c_{boot} ($J_{\text{boot}}=c_{\text{boot}} \cdot J_{\text{hirshman}}$): Trends in p' limit and predicted limiting n and ELM size with J_{ped} agree with observations.
Different n’s and Mode Structures Predicted in Different Regimes

- **Series of JET-like equilibria with self-consistent J_{bs}, high n 2nd access**
- **Edge stability limits scanned with ELITE (6<n<30)**
- **Range of unstable n**
- **n~6-8 unstable**
- **Higher n modes unstable**

- **$n=13$ peeling**
 - Small ELMS
- **$n=8$, coupled peeling-balloonning mode**
 - Large ELMS

- **$n=6$ marginal**

- **$\beta_N \propto p'_{ped}$**

- **J_{edge}**

- **ψ**
Peeling-ballooning modes provide a constraint on the edge temperature pedestal, as well as β

Edge current density increases with edge temperature (Ohmic+collisional bootstrap)

Can consider stability diagram in β_N-T_{ped} space

MHD stability explicitly limits steady state T_{ped}, (for a given width)

Higher triangularity decouples peeling and ballooning modes, allows higher temperature pedestal

$\delta=0.3$ \hspace{1cm} $\kappa=1.6$, $A=3$, $R=3m$ \hspace{1cm} $\delta=0.5$

Stable

\[\beta_N \sim p'_{ped} \]

\[\delta = 0.3 \]

\[\beta_N \sim p'_{ped} \]

\[\delta = 0.5 \]
Different Types of ELM Cycles can be Envisioned

- ELMs triggered by peeling-ballooning modes, ELM size correlates to depth of most unstable mode and to location in parameter space
- Pressure rises up on transport time scale between ELMs, current rises to steady state value more slowly
- Predict changeover in ELM behavior when $J_{\text{ped}} < J_{\text{peel}}$ \Rightarrow strong density and shape dependence
Verification of Peeling-Ballooning Mode Model for ELMs: Case Study in DIII-D

- $n=10$ growth rate attains significant value just before ELM observed
- Predicted radial mode width consistent with ELM affected area
 - Both extend beyond pedestal
- Mode localized on outboard side, consistent with observations in divertor balance experiments
Three DIII-D shots with varying density studied

- In all 3 cases, peeling-ballooning modes are unstable with significant growth rate just before ELM, even though pedestal height is decreasing with density
 - Consistent with peeling-ballooning modes as ELM trigger

- As density increases, most unstable mode moves to shorter wavelengths, and radial width of mode decreases
 - Due to decreasing bootstrap current and narrowing pedestal
 - Expect smaller ELMs at high density, as observed [Leonard KI2.004]
Direct Comparisons Consistent on Multiple Tokamaks

- **Alcator C-Mod**
 - ELM-free and EDA shots are peeling-ballooning stable
 - Peeling-Ballooning modes consistently unstable just before ELMs

 [D. Mossessian KI2.005]

- **JT-60U**
 - Peeling ballooning modes unstable before ELM
 - Broader mode structures in “Giant ELM cases”

[See T. Oikawa QP1.063]
Studies of Model Equilibria Useful for Predicting Trends in Present and Future Devices

- Direct experimental comparisons rigorously test the model, but for prediction of pedestal trends it is useful to conduct pedestal stability analysis on series of model equilibria
 - Compare to observed trends on present devices
 - Predict pedestal height as a function of width, shape, etc in future devices

Sample ITER profiles

![Sample ITER profiles](image)

\[n_e(\psi) = n_{sep} + a_{n0} \left\{ \tanh \left[2 \left(1 - \frac{\psi_{mid}}{\Delta} \right) \right] - \tanh \left[2 \left(\psi - \psi_{mid} \right) / \Delta \right] \right\} + a_{n1} \left[1 - \left(\frac{\psi}{\psi_{ped}} \right)^{\alpha_1} \right]^{\alpha_2} \]

\[T(\psi) = T_{sep} + a_{T0} \left\{ \tanh \left[2 \left(1 - \frac{\psi_{mid}}{\Delta} \right) \right] - \tanh \left[2 \left(\psi - \psi_{mid} \right) / \Delta \right] \right\} + a_{T1} \left[1 - \left(\frac{\psi}{\psi_{ped}} \right)^{\alpha_1} \right]^{\alpha_2} \]

- Model equilibria, match global parameters \((B_t, I_p, R, a, \kappa, \delta, <n_e>)\)
- Current profile aligned to Sauter collisional bootstrap model in the pedestal
- Width \((\Delta)\) is an input: at each \(\Delta\), \(T_{ped}\) is increased until \(n=8-40\) stability bounds are crossed
Trends in Existing Pedestal Database Can Be Understood Using Stability of Model Equilibria

- Trends with density and triangularity calculated using series of model equilibria, and compared to database
 - Inputs are B_t, I_p, R, a, κ, δ, $<n_e>$, Δ

- Strong increase in pedestal height with triangularity is due to opening of second stability access
 - Bootstrap current plays a key role here. Without it (dashed line) second stability is not accessed at high n and strong δ trend not predicted

- Trends with both density and triangularity accurately reproduced: indicates both that pedestal is MHD limited and that model equilibria are sufficiently accurate (also find agreement on C-mod)
 - encourages use of this method as a predictive tool for future devices
High n modes limiting at narrow widths, go second stable at wider widths

Pedestal height increases with width, but not linearly ($\sim \Delta^{2/3}$)

Reaches adequate pedestal height for predicted high performance in observed range of Δ/a

 - Increase height by optimizing δ, n_e, including ω_* effects

 - Scaling of pedestal width remains a key uncertainty [Osborne CT-3]
ELM simulated in BOUT has peeling-ballooning structure

- Additional physics effects (e.g., ω_s, sheared rotation) need to be considered
- Nonlinear BOUT code with current used to simulate peeling-ballooning modes
 - Basic picture of instability remains intact
Rotation and non-ideal effects potentially important

- **Diamagnetic stabilization identified by several authors**
 - Rogers and Drake ‘99 found ω_* effects significantly stabilizing for ballooning modes -> alternative to 2nd stability to explain $\beta > \beta_c$
 - Hastie, Catto, Ramos ‘00 found strong radial variation of ω_* diminishes its stabilizing impact. Huysmans ‘01 work with Mishka also suggests reduced impact.
 - Can make simple estimates based on [Roberts ‘62]:
 $$ -\gamma^2_{MHD} = \omega \left(\omega - \omega_{*i} \right) $$
 - Expect reduced ELM sizes for $\omega_*/2 > \gamma$
 - Stronger effect on larger n
 - Expect delayed appearance or even elimination of large ELMs in some regimes, first mode to appear will be that with largest γ/ω_*
 - Simple model implemented in ELITE:

- **Toroidal rotation shear (and E_r effects in general) also potentially significant**
 - Working to include in ELITE
Summary

- Pedestal current plays an important dual role in stability
 - Drives peeling, 2nd access for ballooning
 - Peeling-Ballooning coupling, intermediate n’s often limiting mode

- New tools (ELITE) allow efficient stability calculation for experimental equilibria over full relevant spectrum of n

- Model of ELMs and constraints on the pedestal developed based on peeling-ballooning
 - Peeling-ballooning modes as ELM trigger, mode structure correlates to ELM depth
 - Quantitative prediction of $p’$, J limits; T_{ped} limits using self-consistent J_{bs}
 - Finite n modes sensitive to pedestal width as well as gradient

- ELM model in agreement with experiment
 - Observed ELM onset consistent with model in multiple tokamaks
 - Pedestal and ELM variation with density quantitatively modeled
 - Trends with triangularity and collisionality consistent, projections made for burning plasmas

- Nonlinear simulations of the boundary region in progress, impact of current included
 - Basic picture of instability remains intact
 - Ongoing work: more complete physics picture and dynamical models

- Many open issues: pedestal width, ELM dynamics, connection to SOL & core...