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Investigation of Resonant and Non-resonant
Magnetic Braking in Plasmas Above the

No-wall Beta Limit

Abstract - In the DIII-D tokamak, stabilization of the n=1
ideal kink resistive wall mode (RWM) is achieved by
sustaining toroidal plasma rotation above a critical
threshold.  The toroidal axisymmetry of the magnetic
field is important for maintaining rotation and allowing
sustained access to regimes with beta significantly above
the no-wall limit.  To help elucidate the role of rotation in
RWM stability, magnetic braking is used as a tool to
modify the rotation profile.  The effects of the non-
axisymmetric field perturbations are studied for three cases:
(1) resonant m/n = 2/1 perturbations with qmin < 2,
(2) non-resonant m/n = 2/1 perturbations with qmin > 2,
and (3) non-resonant n = 3 perturbations with qmin > 1.5.
Comparisons are made to theories such as the "induction
motor model" and "transit time magnetic pumping".



INTRODUCTION

The stability of high beta plasmas (bN > bN        )
is critically dependent on plasma rotation. 

no-wall

The presence of nonaxisymmetric magnetic
fields (error fields) can lead to the decay of
plasma rotation and loss of stability.

Modifying the plasma rotation in a controlled
way is useful for studying the stability of
high beta plasmas.

Three different types of external field perturbations
were applied to plasmas to effect rotation:

1) resonant m/n = 2/1 fields with qmin < 2

3) non-resonant n = 3 fields with qmin > 1.5

2) non-resonant m/n = 2/1 fields with qmin > 2

Each method of magnetic braking is modeled
and comparisons are made of the relative field
strengths required to effect the rotation. 
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RESONANT m/n = 2/1 MAGNETIC BRAKING



THE INDUCTION MOTOR MODEL PREDICTS
THE DEGRADATION OF PLASMA ROTATION
BY A RESONANT EXTERNAL ERROR FIELD

Torque balance - induction motor model:

df
dt =

f0 - f
tM

C Bef
2

f
-

In equilibrium, the driving torque, TD, (from
beams, etc.) is balanced by the viscous torque
and the torque from the error field: 

TD - Tvisc - Tef = 0

Viscosity produces a torque  Tvisc µ f

The error field drag is  Tef µ 
Bef

2

f

where f0 is the result of drive terms, tM is the
momentum confinement time, and C is a
coefficient measuring the error field drag.

The physics of the degradation of plasma
rotation by an external static error field is
analagous to that of a conventional induction
motor model (Fitzpatrick, Phys. Plasmas, 1998) 
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NON-RESONANT m/n = 2/1 MAGNETIC BRAKING



NON-RESONANT m/n = 2/1 PERTURBATIONS
REDUCE ROTATION BY COUPLING

TO A STABLE RESISTIVE WALL MODE

Discharges with bN > bN           and qmin > 2.  No
resonance surface for m/n = 2/1 component.
- induction motor model should not apply

no-wall

The n=1 ideal kink (RWM) is stable, but close
to marginal.
- large m/n = 2/1 component of the displacement 

m/n = 2/1 component of error field couples with
RWM.  Response is like a "forced oscillator"
near marginal stability, exerting drag on rotation.

Expect rotation decay of the form

df
dt =

f0 - f
tM
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NON-RESONANT n = 3 MAGNETIC BRAKING



THE TRANSIT TIME MAGNETIC PUMPING
 MODEL PREDICTS ROTATION DECAY

CAUSED BY A BUMPY MAGNETIC FIELD

n=3 "bumpy" magnetic field, or n=3 field "ripple" 
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COMPARISON OF BRAKING METHODS

Results of the models for rotation decay are
used to compare the three methods of
magnetic braking. 

In equilibrium (df/dt = 0), what relative error field
Bef/BT is required to reduce the rotation to half
the frequency with no error field (f0/2)? 

1) resonant m/n = 2/1

f0 = 7.2 kHz Cr = 30
tM = 0.15 sec BT = -2.1 T

Bef
BT

= 8.1 x 10-5f
f0
2

fi

2) non-resonant m/n = 2/1

f0 = 15.5 kHz Cnr = 4.4
tM = 0.125 sec BT = +1.86 T

Bef
BT

= 7.3 x 10-5f
f0
2

fi

3) non-resonant n = 3

f0 = 3.9 kHz Cttmp = .057
tM = 0.08 sec BT = -1.05 T

Bef
BT

= 1.4 x 10-3f
f0
2

fi



CONCLUSIONS

Three different types of magnetic braking were 
used in plasmas with bN > bN           to modify the
rotation profile and study the stability of high
beta plasmas.

Rotation decay data was fit using the induction
motor model for resonant error fields and the
transit time magnetic pumping or field ripple
model for non-resonant error fields.

For a 50% degradation of rotation, the level
of relative error field required for non-resonant
n=3 perturbations is approximately 20 times
higher than the m/n = 2/1 field required.

A surprising result is that the strength of the
m/n = 2/1 error field required for rotation
modification is comparable for resonant and
non-resonant perturbations.  

no-wall

Increased understanding of magnetic braking
makes it a more useful tool in the study of
high beta plasma rotation and stability. 
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FUTURE WORK

Installation of a set of 12 saddle coils (I-coils) inside
the vacuum vessel has just been completed - 6 coils
in the upper plane and 6 in the lower.

Experiments in error field and RWM control using
the I-coils will be carried out in the 2003 campaign.


