Effect of the electron temperature fluctuations on the turbulent flux measurements in the edge of DIII-D

D.L. Rudakov, J. A. Boedo, R. A. Moyer, S. Krasheninnikov *University of California, San Diego* D.M. Thomas, W.P. West *General Atomics*

J. G. Watkins

Sandia National Laboratories

Outline of the talk

I. Motivation

- Fluctuation-driven particle and heat fluxes in edge/SOL plasma
- Problems associated with the flux measurements
- Assessment of the possible effect of the temperature fluctuations on the measurements

II. Experimental method on DIII-D

- Fast T_e measurements: Harmonic technique
- Probe head layout
- Different methods of calculating fluxes from probe data

III. Experimental results

- Comparison of the spectral characteristics of n_e , T_e and V_f fluctuations
- Comparison of the poloidal wave number spectra of T_e and V_f fluctuations
- Phase angles between n_e , T_e and V_f fluctuations
- Results of applying temperature corrections to the measured fluctuationdriven fluxes

IV. Discussion and summary

Fluctuation-Driven Particle and Heat Fluxes

- Like many other aspects of SOL physics, mechanisms behind cross-field particle and heat transport are still poorly understood, but it is widely accepted that "anomalous" transport in the edge and SOL is largely driven by electrostatic fluctuations
- Fluctuating poloidal electric field E_{θ} causes fluctuating radial $E_{\theta} \times B_j$ drift. Providing the plasma density and temperature fluctuate, the following timeaveraged fluxes result:

Particle flux:
$$\Gamma_r^{ES} = \frac{1}{B_j} \left\langle \tilde{n}_e \tilde{E}_q \right\rangle$$
 Heat flux: $Q_r^{ES} = \frac{3}{2} k \frac{\left\langle \tilde{n}_e T_e E_q \right\rangle}{B_j}$

- All plasma parameters needed to calculate those fluxes in the edge and SOL plasmas can be derived from probe data
- So far probes provide **the only available means** to directly measure local fluctuation-driven fluxes and are therefore widely used for that purpose
- However, interpretation is not straightforward and problems exist:
 - * Measured fluxes sometimes exhibit unphysical behavior: heat flux reversal (DIII-D), particle flux continues to increase inside the separatrix into the pedestal (C-Mod)
 - * Fluxes estimated from the probe data near LCFS are typically higher than surfaceaverage values obtained from modeling and particle/energy balance considerations

Possible source of errors: Neglecting T_e fluctuations

- The poloidal electric field (E_q) is commonly estimated from the floating potential (V_f) measurements at two poloidally separated locations.
- A proper estimate of E_q would require using two poloidally separated measurements of the plasma potential $V_p = V_f + C(kT_e/e)$, where $C \sim 3$ for deuterium plasmas. Therefore, a large error can be introduced!
- Effect of T_e fluctuations can be neglected if:
 - * Relative T_e fluctuation level is much smaller than potential fluctuation levels

- Therefore:
 - * Fast measurements of the electron temperature are required
 - * Poloidal structure of the temperature fluctuations needs to be studied

Fast T_e measurements: Harmonic technique

On DIII-D:

- Drive frequency: 400 kHz
- Bandwidth: typical 100 kHz, maximum 200 kHz
- Novel features: fully digital analysis, active voltage feedback

- A DC-floating probe is driven by highfrequency sinusoidal voltage $U = U_0 \cos(wt)$
- Due to non-linearity of the probe I-V characteristic harmonics are generated in the current spectrum
- For $eU_0/kT_e < 1$ T_e can be determined from the ratio of the amplitudes of 1st and 2nd harmonics^[1,2]

$$kT_e \approx \frac{eU_0}{4} \frac{I_w}{I_{2w}}$$

^[1] Boedo *et al*, Rev. Sci. Instrum. **70** (1999)
 ^[2] Rudakov *et al*, Rev. Sci. Instrum. **72** (2001)

Experimental Arrangement on DIII-D

Calculating turbulent fluxes from probe data

Turbulent fluxes can be calculated in time domain:

$$\Gamma_{r}^{ES} = \frac{1}{B_{j}} \left\langle \tilde{n}_{e} \tilde{E}_{q} \right\rangle$$

$$Q_{r}^{ES} = \frac{3}{2} k \frac{\left\langle \tilde{n}_{e} \tilde{T}_{e} \tilde{E}_{q} \right\rangle}{B_{j}} = \frac{3}{2} k T_{e} \Gamma_{r}^{ES} + \frac{3}{2} \frac{n_{e}}{B_{j}} \left\langle k \tilde{T}_{e} \tilde{E}_{q} \right\rangle = Q_{conv} + Q_{cond}$$
convective conductive

or in frequency domain:

$$\Gamma_{r}^{ES}(\mathbf{w}) = \frac{1}{B_{j}} \int_{0}^{\infty} n_{e}^{rms}(\mathbf{w}) E_{q}^{rms}(\mathbf{w}) g_{nE}(\mathbf{w}) \cos(a_{nE}(\mathbf{w})) d\mathbf{w}$$

$$Q_{r}^{ES}(\mathbf{w}) = \frac{3}{2} k T_{e} \Gamma_{r}^{ES}(\mathbf{w}) + \frac{3}{2} \frac{n_{e}k}{B_{j}} \int_{0}^{\infty} T_{e}^{rms}(\mathbf{w}) E_{q}^{rms}(\mathbf{w}) g_{TE}(\mathbf{w}) \cos(a_{TE}(\mathbf{w})) d\mathbf{w}$$
convective conductive

where:

 $X^{rms}(\mathbf{w})$ - RMS fluctuation amplitude $\mathbf{a}_{XX}(\mathbf{w})$ - phase angle between n_e or T_e and E_q $\mathbf{g}_{XX}(\mathbf{w})$ - coherence

Can be obtained from raw signals using FFT

Spectral features of fluctuations in L-mode (near SOL)

- The shapes of T_e and V_f spectra are generally close, but V_f spectra fall off more rapidly with frequency
- Poloidal wave numbers of the temperature fluctuations below 20 kHz are close but not equal to those of V_f fluctuations
- Most of the fluctuation power and of fluctuation-driven flux are concentrated at frequencies below 20 kHz. Fluctuations are most coherent in that range
- For the above conditions we can characterize the relative phasing of the fluctuations by an average phase angle calculated where the coherence and cross-power are maximum

Correcting the fluxes for T_e fluctuations

Net poloidal electric field can be represented as a sum of two components:

It is convenient to illustrate contribution of the two components of E_q to fluxes using phase diagrams (length = amplitude, a = phase angle)

Note: if for any of E_q components $a = \pm 90^\circ$, it will cause no flux

$T_{\rm e}$ correction to fluxes can be large and of either sign

- Since $\tilde{T}_e / T_e \approx e \tilde{V}_f / k T_e$ and $k_q (\tilde{T}_e) \approx k_q (\tilde{V}_f)$ E_{qTe} should be about 3 times larger than E_{qVf}
- Phase angle between T_e and E_{qTe} tends to be around p/2, so contribution of E_{qTe} to Q_{cond} should be relatively small
- Contribution of E_{qTe} to Γ and Q_{conv} depends on the phase angle between T_e and n_e. If T_e and n_e are in phase, this contribution is small, otherwise it may be quite large and of either sign

 $\Delta\Gamma, Q_{conv} \propto \sin(a_{nT})$

Experimental results: flux correction in L-mode

Experimental results: radial dependence of phase angles

- Poloidal wave numbers of the temperature fluctuations below in near SOL are close to those of V_f fluctuations. In far SOL they differ by a factor of 2 3
- Phase angle between T_e and n_e tends to be small, about 15°, while phase angle between V_f and n_e is around 90°.
- Since $\Delta\Gamma$, $Q_{conv} \propto \sin(\mathbf{a})$ and $\sin(\mathbf{a}_{nV}) / \sin(\mathbf{a}_{nT}) \approx 5$, relative effect of T_e fluctuations is offset in this case, but it can still be large

Summary

- SOL transport is still poorly understood but thought to be largely $E \times B$ fluctuation- driven
- So far electric probes provide the only available means for measuring local fluctuation-driven fluxes in the edge and SOL
- Neglecting electron temperature fluctuations while deriving fluctuation-driven fluxes from the probe data can lead to large errors
- New experimental arrangement on DIII-D provides a unique opportunity to study poloidal structure of the electron temperature fluctuations
- Poloidal wave numbers of the electron temperature fluctuations below 20 kHz in L-mode are close to those of the floating potential fluctuations in near SOL, differ considerably in far SOL
- Depending on the phase angle between density and temperature fluctuations, contribution of the temperature fluctuations to the measured poloidal electric field can be large and lead to significant increase/decrease or even direction reversal of the measured particle and convective heat fluxes
- Conductive heat flux measurement is less affected by T_e contribution to E_q since phase angle between T_e and E_{qTe} tends to be around p/2

More experiments in L and H mode are needed!

