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The Electron Bernstein Wave (EBW) is of interest for both diagnostic applications and for
heating and current drive in low field devices such as present spherical torus experiments
and the reversed-field pinch (RFP). In these devices, neither X- or O-modes can propagate
in the interior of the plasma. We compare the predictions of a generalized waveguide
coupling code[1] to the experimental results from the MST RFP in which a pair of S-band
waveguides were oriented to excite the X-mode (which couples to the EBW near the upper
hybrid resonance) in the edge of the plasma. Good qualitative agreement between the
predicted phase dependence of the reflection coefficient and the measured results is
obtained. In particular, the predicted strong dependence of the coupling on the sign of the
toroidal phasing was observed. Details of the experimental results are presented in the
adjacent poster by Chattopadhyay, et al. (FP1.035)

[1] R.I. Pinsker, M.D. Carter, and C.B. Forest, in Radio Frequency Power in Plasmas (Proc. 14th

Top. Conf., Oxnard, CA, 2001), (AIP, Melville, NY, 2001), p. 350.



l	 However, wave physics dictates that in plasmas in which wpe / We >> 1
	(low field / high density), conventional ECH is not possible as a method
	 of heating the core plasma. For example, O- and X-modes can penetrate only to
	a density of a few 10 11cm-3 in RFP discharges in the Madison Symmetric Torus.

l	 Electron cyclotron heating and current drive has proven very useful in toroidal
	plasma devices, due to its strong, localized absorption and its utter lack of
	coupling difficulties

l	 The Electron Bernstein Wave (EBW) has been investigated as a means of heating
	such plasmas by Ram, et al. Several methods of coupling to the wave by mode
	conversion from 'conventional' EC waves (O- and X-modes) have been studied

l	 In the present work, we solve an antenna coupling problem relevant to this
	problem, in which the coupling structure is a phased waveguide array,
	similar to a LH grill
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Density profile for 'standard' MST case, based on
Langmuir probe measurements
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Fit of density profile data from MST to an exponential, showing
cutoffs, UHR for f=3.6 GHz for two different linear B-field profiles:

 1) Bp (G) = 535 + 41.8 G/cm * x (cm) [has 2nd harmonic near UHR]

 2) Bp (G) = 650 + 18.8 G/cm * x (cm) [no 2nd harmonic]
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Note that the vertical scale is approximately log10(|n  |) for |n  |  >>1,
and is linearly proportional to        for        <<  1
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Application of 'rules of thumb' of Ram, Bers, et al.

For 'straight-in' propagation, i.e., ky = kz = 0, we may apply the theory of Ram and Bers to 
evaluate the practicality of the X-B and O-X-B schemes

l

Evaluating the Budden tunneling parameter, h = WeLn /c x F(Ln /LB,wpe/We), in which
F is an algebraic function, for the MST-like density and B-field profile, we get that the B-field
gradient is unimportant compared to the density gradient, and that h ~ 0.11, about half
of the optimal value for X-B conversion

l

The fact that h << 1 shows that the gradient is much too steep for the WKB approximation
('adiabatic') to be useful, and that the equivalent of the 'sudden' approximation, i.e., matching of
boundary conditions across a step change in parameters, is more appropriate here

l

h << 1 also implies that the O-X-B scheme will not be effective here, since there is too much
'leakage' from the slow X-mode inside the upper hybrid resonance out via the fast X-mode 

l

However, these simple considerations do not apply for ky, kz = 0, so for a phased array
antenna at phasings other than 0, we must use a more complete model

l /
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l	 Matching Ey at x = 0, Bz only in waveguide opening, for simplest case we can
      write down an equation for the waveguide reflection coefficient ρ:

l	 Integral must be performed over the path determined by causality if there 
	 are any singularities of Y (ny) for real ny, such singularities
       representing surface modes, for example

1 – ρ
1 + ρ

(k a/2)  ∫π   εw
= Λ =

Bz
Ey

plasma
admittance

Brambilla, M., Nucl. Fusion 16 (1976) 47.

antenna
spectrum

Y =       l x = 0+
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Plasma physics is entirely embedded in the admittance calculation; 
spectrum merely provides the weighting appropriate to a given antenna, phasing, etc.

l

Surface admittance can be obtained analytically for a uniform plasma, with
or without a vacuum gap between the conducting plane at x = 0 and the
half space filled with uniform plasma

l

Solution obtained by Brambilla's method

=

=



For more realistic density profiles, admittance must be obtained by numerical
integration of the wave equation from a point within the plasma where an
outgoing wave boundary condition (radiation condition) is applied back to
the wall at x = 0

l

Surface admittance of uniform plasma, with or without vacuum gap, exhibits
poles corresponding to surface modes - these non-pentrating modes nevertheless
couple to the upper hybrid resonance (thence to the EBW in a warm plasma) via
their radially evanescent fields, as only a few millimeters separate the region of
surface wave propagation (near R=0) and the UHR (at S=0)

l

As finite density gradient is introduced, these 'not quite' surface modes are also 
damped by phase mixing, analogous to Alfven wave heating problem, but for 
parameters like MST, it appears that damping due to proximity of UHR dominates

l

Efficient coupling to the UHR (= to the EBW) appears to be possible with the surface
wave-like mode as intermediary: the antenna near fields excite the surface mode
propagating in the y-direction and the surface wave's fields excite the UHR, thus
coupling the energy to the EBW which then (slowly) propagates inwards and damps

l

More notes on the solution of the Brambilla problem



We have combined a calculation of grill-type coupler fields with computations
of surface admittance, the latter performed in three different way with two different
models of the plasma dielectric response:

	 a) GLOSI [ORNL] - hot plasma model incorporating the lowest order EBW (Ωe<ω<2Ωe)
	 b) Weakly collisional cold plasma model, computed with explicit numerical scheme (GA)
	 c) Weakly collisional cold plasma model, computed with implicit numerical scheme (U. Wisc.)
 

l

Agreement between the two numerical methods [(b) and (c) in the above] is within the
allowed numerical error. The explicit scheme is much faster, but not as general as the
implicit scheme, which was formulated by Svidzinski. For most cases in the regime of
interest here, either method works equally well.

l

Agreement between surface admittance computed with weakly collisional cold plasma
model and GLOSI model is excellent, particularly for the real part of Y21. Hence, there
is no Te dependence of the surface admittance up to very high values of Te (at which
the electron gyroradius becomes comparable to the gradient scale lengths and the 
hot plasma model in GLOSI becomes inapplicable).

l

Computation of the surface admittance in three ways
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Comparisons of surface admittances Y21 computed with cold plasma model and GLOSI
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GLOSI clearly demonstrates that the peak in coupling corresponds
to a peak in mode-conversion efficiency to the EBW

ny=-0.75, nz=0
Re, Im Ex Re, Im Ex

ny=+0.75, nz=0

Energy propagation direction
in GLOSI (increasing density)

Wall

Poynting flux = 8.8 W/m2 Poynting flux = 42 W/m2

Wall



GLOSI shows that the surface admittance is
almost independent of Te, as expected

Note that at Te = 1 keV, the electron gyroradius is about 1.1 mm,
compared with the density gradient scale length of 6.6 mm
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Waveguide openings are 7.21 cm X 3.454 cm (S band);
guides can be oriented to excite either O- or X-mode

Twin waveguide coupler is being used in EBW coupling
experiments on Madison Symmetric Torus 



Scan of 'gap', for X-mode coupling, y-phasing, two-guide array
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Scan of gradient scale length, X-mode coupling, y-phasing, two-guide array

Density profile = n0 * exp([x-a]/xL)
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Comparison of surface admittances Y12 computed with cold plasma model and GLOSI
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Scan of 'gap', for O-mode coupling, z-phasing, two-guide array
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Scan of gradient scale length, O-mode coupling, z-phasing, two-guide array

Density profile = n0 * exp([x-a]/xL)
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Conclusions 

l 	 The modified waveguide coupling code can compute EBW coupling

l	 For X-mode coupling, a strong 'y'-phasing (toroidal for the RFP) asymmetry
	 is predicted for the MST case, resulting from the properties of the surface-like
	 mode, to which most of the power can be coupled. Good coupling via the 
	 X-B scheme is predicted for MST, at the optimum toroidal phasing
       
l	 By contrast, coupling via the O-X-B scheme is predicted to be rather poor, 
	 in agreement with the results of Ram, et al., and completely symmetric with
	 respect to the sign of the (poloidal) phasing

l	 No dependence of the waveguide reflection coefficients on the edge electron 
	 temperature should be observable, even though that parameter determines the
	 wavelength of the EBW

l	 This predictions are, so far, entirely in agreement with the measurements, as
	 is shown in detail in Chattopadhyay, et al. in the adjacent poster



Appendix

Calculations of admittance matrix elements for
standard case computed with GLOSI and with the
cold plasma model, and for a half-space filled with
uniform lossy cold plasma



Re(Y21) surface from GLOSI calculation
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Re(Y21) surface for standard case

Re(Y21) Contours

Standard case



Re(Y21) for half space of uniform, collisional plasma

Re(Y21) Contours

Uniform case



Im(Y21) surface from GLOSI calculation

Im(Y21) Contours

Standard case



Im(Y21) surface for standard case

Im(Y21) Contours

Standard case



Im(Y21) for half space of uniform, collisional plasma

Im(Y21) Contours

Uniform case



Re(Y12) surface from GLOSI calculation
Re(Y12) Contours

Standard case



Re(Y12) surface for standard case
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Re(Y12) for half space of uniform, collisional plasma

Re(Y12) Contours

Uniform case



Im(Y12) surface from GLOSI calculation
Im(Y12) Contours

Standard case



Im(Y12) surface for standard case

Im(Y12) Contours

Standard case



Im(Y12) for half space of uniform, collisional plasma

Im(Y12) Contours

Uniform case


