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Introduction

● DIII-D, JET, and JT-60U found a “current hole” in the central core.

— Formation: Off axis non-inductive current (bootstrap, rf) generates a negative electric field
which diffuses inwards causing transient negative on-axis current. This excites the n = 0, m =
1 resistive kink mode which “flattens” the central current to zero. (Huysmans, PRL, 87 (2001)

— Properties after formation.
❑  Robust discharge. Large negative magnetic shear region outside hole stabilizes
ballooning modes and ITG modes).
❑  Good confinement. Clearly identifiable ITBs structure observed in the outer region.
❑  Slow hole decay, ~ 5 s in JT-60U, yet longer than the current resistive time scale.

● Current holes may improve tokamak performance by (1) Eliminating the need for a loop
voltage and non-inductive current drive (2) Enlarging the region of negative shear.
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What Sustains Current Hole?

●  EXPLANATION: Torkil Jensen (GA-A 23898) proposed the idea that the current hole
might be sustained by particle flow across flux surfaces, i.e., outward convection of
magnetic flux counters inward diffusion, and prevents annihilation of flux at 0-point.

— Once a finite-sized hole is created it then become possible to “fit” a distributed
particle source inside the hole (ionized beam particles or pellets). The effect of the
outflow is analogous to the solar wind’s effect on the Earth’s magnetic field.

—Needs sufficiently large particle fueling rate inside the hole, and the stronger the
source the larger the hole.



How to Solve for Current Hole Equilibrium
● Magnetic fields and Currents
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● Grad-Shafranov equation in cylindrical coordinates (R, φφφφ, Z) with axi-symmetry
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● Main Idea.  Find an equilibrium solution with a current hole that is also consistent with
a steady-state Ohms law. This entails relating surface functions p′′′′  and FF′′′′ to the
supplied particle source S and the neoclassical Bootstrap current λλλλ.



Current Closure Condition and Steady State
● Outside the current hole: div ( )||
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● Current closure shows that the parallel current has two distinct parts
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● With no loop voltage and auxiliary current drive, the only remaining force-free parallel
current in steady-state is the neoclassical bootstrap current: In banana regime this is

    〈 〉 = ′J B g F pbs ( ) ( )Ψ Ψ          Limits: g →→→→1 if trapped fraction ==== 1, g →→→→ √√√√εεεε if εεεε << 1.

Y.R. Lin Liu, et al Phys Plasmas (1999) proposed a general form for g(Ψ).
● The nature of current closure imposes a constraint not connected to the || Ohms law
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Ideas on Constructing a Phenomenological Ohms Law

●  The Key Dilemma The toroidal resistivity in tokamaks is Spitzer-like with neoclassical
corrections, yet particle transport is anomalously larger than neoclassical predictions.

 Experimental Magnetic Reynolds number is much greater than neoclassical expectations
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●  Possible Reconciliation. Turbulent fluctuations are long-wavelength modes, k||, kφφφφ <<

k⊥⊥⊥⊥ . Thus the fluctuation-induced electron friction force is anomalously large in the ⊥⊥⊥⊥
direction, but remains classical in the ||, φφφφ direction

●  Approach Poloidal current has two parts ⊥⊥⊥⊥  diamagnetic part and a || parallel streaming
part. Presumably turbulent fluctuations affect only frictional forces having to do with the
⊥⊥⊥⊥  part and leave the || part unaffected. So we assign an anomalous resistivity ηA to the
⊥⊥⊥⊥  part and a Spitzer || resistivity η to the parallel part.



Toroidal Current and Particle Continuity

● Toroidal current density from new Ohms’s law
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Ironically, the toroidal friction is classical yet opposes an anomalous cross-field flow.

● Flux surface average the continuity equation

  ρ ′〈 ⋅ ∇ 〉 = −V v S
r
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∇∫V Rd2π l

| |Ψ
S(Ψ) = rate of particles supplied inside the volume enclosed by flux surface Ψ

 

Then S(Ψmax) = particle source inside the current hole.

Since the theory and computation of neutral beam/pellet deposition is well at hand, it would
seem natural to specify the real source S(Ψ) instead of the commonly used surface
functions. This leads to more exotic equilibrium solutions, e.g., the current hole.



Relate Particle Source to Pressure gradient
● Flux-surface average toroidal current from Ohm’s law, then combine with continuity
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● Next step is to replace Jφφφφ in the above equation with the right-hand side of the Grad-
Shafranov equilibrium equation. Then use the explicit form of the bootstrap current. We
then obtain an equation connecting p′′′′, and FF′′′′ to S

′ 〈 〉 − 〈 〉



 + ′ =

′
p R g F B FF S

n V
2 2 2

0( ) / / ( )
( ) ( ) ( )

Ψ Ψ
Ψ Ψ Ψ

µ
η

● Finally we use current closure to eliminate F′′′′ in the above equation to get
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By specifying the particle source function S(Ψ), the pressure gradient adopts an “organic”
quality: p′′′′ automatically goes to zero near a developing current hole where V′′′′  →→→→∞∞∞∞.



New Form of GS Equation in terms of Particle Source
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This form corrects T. Jensen’s expression (GA-A23898) in which H(Ψ) = 1 as a result of
artificially forcing F′==== 0. Note: the H(Ψ) function is non-singular and well-behaved, since the

denominator is positive definite by a Schwartz inequality: 〈 〉〈 〉 − >−R R2 2 1 0.

●  Nondimensional form: r ==== R/R0, z ====  Z/R0, ψψψψ ==== ΨΨΨΨ/ΨΨΨΨmax, ′ =
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                    Normalized source profile:  G(ψψψψ) = S(ψψψψ)/S(1),  and  R0 ≡ inboard major radius
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More on H(ψψψψ) function
●  Additional definitions and normalizations used in H(ψψψψ):

Bφφφφ0 ≡≡≡≡ Vacuum toroidal magnetic field at inboard radius R0 ,  F0 ≡≡≡≡ R0 Bφφφφ0 , f(ψψψψ) ≡≡≡≡ F(ψψψψ)/F0.

To determine ΨΨΨΨmax, choose a nominal poloidal magnetid field Bp0, and inverse aspect ratio

εεεε0 . Then ΨΨΨΨmax ≡≡≡≡ R0
2 Bp0εεεε0.  Everything is known in H except f(ψψψψ), which we determine later.
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●  Estimation of magnitude:   H
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●  In JT-60U H(ψψψψ ) ~ 3.  T. Jensen (GA-A23898) computed equilibria with H(ψψψψ ) ≡≡≡≡ 1.
Interestingly, in limit of zero bootstrap current, and infinite aspect ratio, H(ψψψψ) →→→→ 1.



Numerical Scheme
●  Choose Rm, and specify functional form of source function G(ψψψψ) the Bootstrap

cofficient g(ψψψψ). Choose edge q0, and εεεε0. Then B B qp0
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●  Choose the vacuum field f(ψψψψ) ====1 as a reasonable initial guess for f(ψψψψ).
●  Put 2-D GS equation into finite difference form, and iterate solution using T. Jensen’s

Jacobi algorithm. After each iteration, renormalize ψψψψ such that its maximum is ψψψψ ====1.
●  Use this 2-D solution to solve a “cheap” 1-D flux-surface-averaged GS equation to

obtain the next iteration on f(ψψψψ). Note: ′Ṽ isof orderε0
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●  Alternate back and forth between 2-D and 1-D equations until convergence obtains.



Special Case: T. Jensen’s “Super Hole” Solution

● Suppose bootstrap current is zero (g ==== 0). Then solution of the 1-D equation for f gives
   f const I( ) ( )ψ ψφ= .  So without a bootstrap current the toroidal magnetic field is also

zero in the current hole   a “Super Hole”. Next, we show how this case connects to T.
Jensen’s “pressure driven tokamak” (Phys. Plasmas, 1996).

● In large aspect ratio circular cross section limit I B d dφ θρ ρ ψ ρ∝ ∝ /  (ρ ==== minor radius).

➞  q  ==== const ρ2, and the magnetic shear ==== 2, regardless of the f(ψ) profile.

Choosing Jensen’s power-law form: f( ) ( )ψ ψ ν= −1 , we find a trivial equation    for ψ
                       ➞   ρ ψ ρ ψ νd d const/ ( )= −1

BCs: ψ ==== 1 at hole radius ρ ==== ρh, and ψ ==== 0 at plasma boundary ρ ==== a.
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 confirms Jensen’s solution using a different approach!

Note: Index ν must lie in the interval 0.5 < ν < 1, to avoid singular currents at hole radius.



Calculations for JT60U
● Plasma parameters in current hole region (Fujita, Oikawa, et al PRL, 2001)

Te     ==== 5500 eV n ==== 2.9 ×××× 1019 m-3 Zeff ==== 3 R0 ==== 2.5 m

σ⊥ = =
9700 3 2T

Z
e

eff

/

lnΛ
8.3 ×××× 107  A/V-m   ,   σ|| = 1.7 ×××× 108  A/V-m

● Beam ionization rate in current hole (Fujita, private communication to Jensen 2002)

S(1)ion ==== 2.5 ×××× 1020  ions/s

● Magnetic Reynolds number in hole assuming S(1) ====  S(1)ion. This is an upper limit!
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= ⊥µ σ

π
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( )
==== 54    Rmeff ~ Rm ×××× H  ==== 54 ×××× 3 ====  160.

➞  Caveat: Because large orbit beam particles may thermalize outside the hole the
fueling source could be considerably less than the ionization source.

    Crude estimate in JT-60:  S(1) ~ 0.35 S(1)ion, so possibly Rm ~ 19 and Rmeff ~ 57.



CURRENT HOLE SIZE VERSUS Rm
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From T.H. Jensen, GA-A23898



Conclusion
● The basic idea is that a finite sized hole, once formed by other processes, allows one
to “fit” a distributed mass source inside the hole volume.  Outward flow prevents poloidal
flux from collapsing towards the magnetic axis and sustains the hole with no or little loop
voltage required.

● We developed and enlarged the model of T. Jensen (GA-A23898). The improved model
is more internally consistent since it include the proper current closure constraint which
was missing in the Jensen model i.e., ( F′′′′≠≠≠≠ 0). We included the bootstrap current effect
necessary for a steady-state current hole equilibrium without auxiliary current drives.

● We combined the equilibrium and transport equations (Ohms law and continuity) to
obtain a new form of the Grad-Shfranov equation specifying only the particle source
distribution inside a flux surface S(ΨΨΨΨ), (plus a temperature profile). It has 2 main input

parameters, Rm, and q0 at edge.  Like in the Jensen model we expect to find that

— Hole size increase with magnetic Reynolds number Rm.

— Hole sizes may be in better agreement with the JT-60U experiments using this model.


