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ATTRACTIVENESS OF ANY FUSION POWER SYSTEMS RELIES ON PROVIDING
HIGH POWER DENSITY AND HIGH DUTY FACTOR (OR STEADY STATE)

Goal of DIII-D Advanced Tokamak (AT) Program: Develop physics basis and
plasma control methods needed for steady state, high performance operation

e Steady-state operation requires:
— Plasma current driven noninductively
— High bootstrap current fraction (fgs)

o Self-consistent solution to achieve simultaneously high performance and high fg¢
requires:

— Moderately high g
— High By
Both experimental experience and simulations suggest that:
— A relatively small (~10%) amount of currentdriven atp ~ 0.5
— Combined with bootstrap current and NBCD
[] steady state current profile compatible with a high 3 equilibrium
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RECENT DIlI-D EXPERIMENTS HAVE DEMONSTRATED OFF-AXIS
ECCD AS AN EFFECTIVE TOOL TO CONTROL THE CURRENT
PROFILE IN ADVANCED TOKAMAK OPERATION

e The experiment using off-axis ECCD has demonstrated integrated AT operation,
combining:

— High 3 (> 3%) at high q (ggs ~ 5)

— Good energy confinement (Hgg ~ 2.4)

6 B T T T T
— High noninductive current fraction ( fzg ~ 55%, fy, ~90% )
5k
e Clear evidence of the effectiveness of off-axis ECCD g
demonstrated in high 3 plasma with ¢, > 2 4r
— Internal transport barrier formed even in the 3T
presence of type | ELMs )
[ ~
— Improvements observed in all transport channels 1
P P 1 .J]Ecc}&
— Increased peaking of profiles lead to higher bootstrap 00 02 04 06 08
current in core Normalized Radius

— Nearly steady-state current and pressure profiles maintained for 1 s
— Good access to the regime demonstrated where higher fy5 possible with higher 3
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MODELING AND SIMULATION HAVE BECOME ESSENTIAL
TOOLS FOR THIS EXPERIMENTAL PROGRAM

Predictive Modeling Predictive Modeling
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e Predictive modeling prior to the experiment based on an existing DIII-D discharge:
— Used to develop detailed experimental plans
— Successfully predicted main features of the experiment with delightful surprises

o Simulations allow detailed comparison with theory and experiment

e Predictive modeling indicates that full noninductive sustainment is possible in near
future
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OUTLINE

e Current profile modification with ¢, >2

— ECCD
— Experiment versus Simulation

e MSE

® Joy
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APPLICATION OF ECCD IN HIGH 3 WITH q,,;,, > 2 DISCHARGE RESULTS
IN FAVORABLE CHANGES TO CURRENT PROFILE AND TRANSPORT
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Early H-mode used to access high g,

By = 2.8, Hyy = 2.4 maintained by NBI
feedback

Robust operation at 3 > 3, "l (=2.5)
made possible by RWM stabilization

ECCD causes increase In central
magnetic shear

Both T, and T, increases with
application of ECCD

S. Allen: LO1.001

C. Greenfield: LO1.002
A. Garofalo: LO1.004
J. Ferron: LO1.004
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CURRENT PROFILE MODIFICATION IS DUE TO
CURRENT DRIVE RATHER THAN TO HEATING

ECCD (111203) ECH (111239)

,'p{}l/ Pinj (10 1) e ECH: Radial launch; Heating only
ECCD: Tangential launch; Heating and CD

1.2

e [3,= 2.8 maintained inboth cases

e ECCD increases g, and reduces g,
relative to reference case

=10 Ti(0 e Local transport improves with increases
g, in central T, and T, observed with ECCD
0 Ta(0)
0 500 1000 1500 2000 2500 3000 3500
Time (ms)
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MSE MEASUREMENT OF J, SHOWS AN INCREASE
IN CURRENT AT THE ECCD LOCATION
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e Mortional Stark effect
spectroscopy to measure
magnetic pitch angle (B /Btor)

e At start of ECCD, current
profiles are identical

o At2.7s
— J(pincreased at ECCD location

— Analysis indicates 130 kA
ECCD, consistent with CQL3D
prediction (120 kA)

— Normalized CD efficiency
consistent with that required
for AT target scenario

C. Petty: IAEA 2002
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MODELING AND SIMULATION ARE ESSENTIAL
FOR THE EXPERIMENTAL PROGRAM

e TRANSP and ONETWO codes:

Simulation: Solve J [B,(p,t) diffusion

equation] with experimental kinetic
profile inputs

Predictive modeling: Solve J, Toand T; 441
equations with experiment-based X, "
and z |

e TRANSP run using the Fusion Grid 0.5
created by the National Fusion '
Collaboratory Project

1.5

0.0 0.2 04 06 08 1.0

« ECCD/ECH Normalized Radius

— Used 1.2xJ.cp(TORAY-GA)
e NBCD

— Monte-Carlo slowing down with a modest spatial diffusion of beam ions
e Bootstrap current

— Used Hirshman 78 model (Large R/a approx.)

— Underestimate by ~10% compared with NCLASS and Sauter models

Dill-D ¥ FusionGRID
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SIMULATIONS SHOW THAT ECCD PREVENTS
INWARD CURRENT PENETRATION
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e With ECH (no CD), the current peak continued to move in
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SIMULATIONS SHOW THAT ECCD PREVENTS
INWARD CURRENT PENETRATION

SIMULATION
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e With ECH (no CD), the current peak continued to move in

o ECCD clearly produced an off-axis peaked J,

e Slight shift of the current peak position from the ECCD peak due to
bootstrap current at p<0.35
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SYNTHETIC MSE SIGNALS GENERATED BY THE SIMULATION
AGREE WELL WITH EXPERIMENTAL MSE SIGNALS

MSE Pitch Angle (deg.)
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Simulation
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Time (S)

J(p profile

e Two procedures implemented:

— Offset calibration adjusted at
one early time

— E,(p) from CER measurement

e Agreement in nearly all channels
throughout the discharge

M. MakowsKi
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LOCAL TOROIDAL CURRENT DENSITY PROFILE PREDICTED BY
SIMULATION AGREES WELL WITH MSE INFERRED CURRENT PROFILE
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e Broad current profile with ECH
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LOCAL TOROIDAL CURRENT DENSITY PROFILE PREDICTED BY
SIMULATION AGREES WELL WITH MSE INFERRED CURRENT PROFILE

200 — "] = Simulation
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e Broad current profile with ECH
e More off-axis peaked with ECCD
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LOCAL TOROIDAL CURRENT DENSITY PROFILE PREDICTED BY
SIMULATION AGREES WELL WITH MSE INFERRED CURRENT PROFILE

200 —8M ——— 4+ —

—_—  Simulation

1 Tangential MSE
.~ ~' Radial MSE

150_ -t Edge MSE

=
o
o

Local toroidal current density
Jo (A/lcm2)
3

Midplane major radius, R (m)
RN AN N A N N N N S A O

—0.2 00 02 04 06 08 1.0
Normalized minor radius, p (approx.)
e Broad current profile with ECH

e More off-axis peaked with ECCD

e The current peak is broader than the ECCD driven current due to:
DHI-D — Substantial Phirsch-Schllter current component which is averaged out in [J [
- — Bootstrap current 200-02MMITY




ALTHOUGH ECCD CONTRIBUTION TO TOTAL NONINDUCTIVE
CURRENT IS SMALL, ITS EFFECT ON BOOTSTRAP CURRENT
REDUCES OHMIC CURRENT TO LESS THAN ~15%
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o Experimental J,,, from the loop voltage analysis:
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ALTHOUGH ECCD CONTRIBUTION TO TOTAL NONINDUCTIVE
CURRENT IS SMALL, EFFECT ON BOOTSTRAP CURRENT REDUCES
OHMIC CURRENT TO LESS THAN ~15%

Nonlnductlve Current Fractions
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e Experimental J,,, from the loop voltage analysis:
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o f s increased by 10% when ECH L ECCD
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IMPROVEMENT IN BOOTSTRAP CURRENT ARISES FROM
INCREASED PEAKING OF DENSITY AND TEMPERATURE
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e Strong NCS triggered a weak internal transport barrier (ITB)
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REDUCED TRANSPORT COEFFICIENTS OBSERVED IN
ALL TRANSPORT CHANNELS IN CORE
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DIll-D . x:f(convective + conductive) = xf(neoclassical) at p < 0.35 with ECCD
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IN SEPARATE EXPERIMENTS, ECCD HAS BEEN USED TO
SUSTAIN A STATIONARY CURRENT DENSITY PROFILE
FOR UP TO 1.0 S with
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_ 40
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CURRENT PROFILE IS STATIONARY
FOR FIRST SECOND OF ECCD

o Direct inference of J, using MSE data e EFIT reconstruction of equilibrium
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NONINDUCTIVE CURRENT FRACTION OF ~85% WAS
OBTAINED IN THE g, 1.5 REGIME
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NONINDUCTIVE CURRENT FRACTION OF ~85% WAS
OBTAINED IN THE g, >1.5 REGIME

Noninductive Current Fractions
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DISCHARGE WITH 3, ~ 4 HAS BEEN
OBTAINED WITH NBI IN THE g,,;, ~ 1.5 REGIME
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ByHgg > 10 for 41,

Minimal MHD activity

Small RWM amplitude due to
sustained plasma rotation
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PREDICTIVE MODELING BASED ON ONE OF THE HIGH 3, TARGET

DISCHARGES WITH g, ~ 1.5 INDICATES THAT THE FAVORABLE
CURRENT PROFILE CAN BE MAINTAINED INDEFINITELY

6

Safety Factor, q

Te, T; (keV)

0 [

ECCD (3.5 MW) + NBI (7.9 MW)

SRR
-
-
~

e
..........
.....
.....
e,
-------
.....
''''''
e,

.......
......
tiha

00 02 04 06 08
Normalized Radius

1.0

=
(3,

-
o
T

05 [

— t=20s ]
Jit(20°s) ----- t=0s (exp) :

0.2

OI.4 OI.6 OI.8 1.0
Normalized Radius
By = 40
Hgg = 3.1
fgg = 80%

e Assumed a broadly distributed off-axis ECCD at P¢. = 3.5 MW
e Sustaining this high (3 value requires reliable RWM stabilization which we
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PREDICTIVE MODELING SHOWS THAT THE EXISTING q,,, > 1.5 ECCD
DISCHARGE CAN BE EXTENDED TO FULL NONINDUCTIVITY USING THE
HARDWARE CAPABILITIES AVAILABLE IN THE NEAR TERM
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e Estimated power requirements are conservative: H98y2 scaling power
degradation (X [ Xy, P%%); kinetic (not magnetic) By; and bootstrap model

e The DIII-D ECCD capability expected in 2003 includes 4 s (> 1., ) of ECCD at
DiIll-D Pec ~ 2.5 MW
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SUMMARY

o Current profile at high (3 has been modified using off-axis ECCD with q;, >2
— Strong negative central shear produced

— Improvements observed in all transport channels
— g5 ~ 55%; fy, ~90% achieved; higher values limited by attainable 3,

e Current profile at high 3 has been sustained with g, >1.5

— Nearly steady-state current and pressure profiles maintained for 1 s
— Good access to the regime demonstrated where higher fg5 possible with higher 3,

e Predictive modeling validated for full noninductive operation with q,.. > 1.5 using
near-term hardware capabilities

DIli-D

BLETIOALE] FLASAON PRSI

299-02/MMIJY



THE CORE REGION OF THE ECCD DISCHARGE MAY BE LIMITED
BY RESISTIVE INTERCHANGE MODES

8 T T T T 8 -------------------
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e GKS [ alL;(exp) limited by a/L;(ITG) in the ECH case
e Stronger NCS, a-stabilization (and ExB shear) stabilize ITG in the ECCD discharge

e Resistive interchange modes are found to be unstable in core (p = 0.15 - 0.41) with
ECCD, as shown by D, >0 there

— Some bursts observed in Mirnov signals
e Since GKS code uses the ballooning representation, the code calculation in this region
IS invalid
e We also note that x £(exp) ~ x;¢M(neo) in region p < 0.35 for the ECCD case
Diln-D
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ATTAINABLE 3, OBSERVED TO DECREASE AS g, INCREASES

A0 %
e So far, B, = 3.5-4.0 possible with g, <2 [ « Maximum experimental By j
| V4
i \
e Robust operation above no-wall, ideain=1  3.9[ N
limit made possible by RWM stabilization - N

o Stability calculations [J with suitable

broad pressure profiles and RWM
stabilization, higher 3, may be possible

with g, >2

1.5 2.0 2.5

Omin

J. Ferron: LO1.005
DD A. Garofalo: LO1.004
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