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Outline
- The 110 GHz ECH system

— Installation

— Components

— Capabilities and performance
— CVD Diamond windows

- Experiments
— Transport and power deposition (Casper LO1.003)
— ECH/ECCD efficiency (DeGrassie LO1.011)
— NTM suppression (Petty LO1.007, Prater QP1.075)

— Feedback control of injected rf power (Wade
LO1.008)

— Advanced tokamak operation (Murakami FI1.002,
Greenfield LO1.002, St. John RP1.032)

-  Summary and future plans
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The DIII-D ECH Installation
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The DIII-D ECH System

TRAMSMISSION LINES
RADIATION ~38 to ~591 METERS

SHIELD EFFICIENGY ~ 80%
PEMETRATIOMN

REMOTE COMTROLLED
WAVEGUIDE ISOLATION
VALVES FOR EACH LINE

DUMRYY LOAD  FWDREY
POWER MONITOR

Line length

DITI-D Tokamak
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Transmission Line Efficiency >80% for
100m Length

Short path reference measurements

100 m transmission line
with 14 miter bends

109.85 110.0 110.15
| |

Frequency (GHz) D=0
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Pumping and isolation
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Waveguide Lines at DIlI-D

m[)// Iy

30 kV
d.c. breaks

Turbopumps
! P<1x10 Torr
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ECH Waveguides at DIII-D
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Launchers

DITI-D Tokamak
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Articulating Launchers

60 mm dia
Launch waveguide

Weakly focusing
Glidcop mirror

Flat steering
mirror (one
shown)

*Three fully articulating dual launchers are now installed on DIII-D
‘Two launchers have fast mirror scan capability
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Articulating Launcher Scan

+20°
poloidal
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Articulating Launcher Scan

Scan rates ~10°/sec
Air turbine drive motors
800 kW, 10 sec pulse every 10 min
_ Mirrors cooled by radiation
\ Diagnostics:Langmuir probes

TV cameras

RTD thermal monitors
Designed and built by PPPL

+20°
poloidal
scan
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The DIII-D ECH System

TRAMSMISSION LINES
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Polarizers

DITI-D Tokamak
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Polarizer Pairs Give Arbitrary Elliptical
Polarization in Vacuum Under Remote Control

0 0
Inclination (deg)

60

Power density (MW/m?3)

100% X-mode

0.02

» 0\
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e\\\Q\' miter 2

o 1
p
Polarizers are two The measured power

grooved miter mirrors  deposition profile
and produce arbitrary becomes a polarization
elliptical polairzation.  diagnostic.
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The DIII-D ECH System
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Gyrotron vault

DIII-D Tokamak pup—— » |
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ECH Gyrotron Vault

Isolation \/
valves \
o '
8 ;
|
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ECH Gyrotron Vault
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The DIII-D ECH System
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Dummy loads

DITI-D Tokamak
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Dummy Loads for 1 MW cw
(they're not just pieces of pipe)

to backstop

_ 72 load
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Unigue Components

Vacuum pumpouts Waveguide switches
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Bellows and other specialized components

Power
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Modern 1 MW Class
Gyrotrons at 75-170 GHz

" Production, R&D
- CPI (US)
- Gycom (Russia)

- Thales (France)
e S - Toshiba (Japan)
* R&D
Colector Cail - MIT, CCR, UMd, UW (US)
\I we /0 -1AP, StPSTU (Russia)

RN \ - FzK, CRPP, U. Stuttgart (EU)
ot |\ ‘ wwe - JAERI, Fukui Univ. (Japan)
- U. Helsinki (Finland)

L
- - deBeers, Fraunhofer Inst (EU)
[
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DIlI-D Gyrotron Parameters
and Power Balance

GYROTRON | PULSE | ¥ '1,... | EFF P.. P | Py
NAME LENGTH L kv) (A} [(%) | (kW) | (kW) | (kW)
(mfg) (SEC) (%) (%)

Katya (G1) 2.1 12 31 3 33 173 699

(Gycom) 3.7 25

Boris ((:2) 2.1 69 30 37 30 136 TS

( Csyoom ) . . . | 3.9 15

Matasha (G3) 2.1 69 30 30 25 123 611

{ Gyoom) . . . | 4.1 20

Tin Man (P2) 5.0 S0 40 3 2.1 o9 955

(CPI) | | | _ 022 |7
Lion (P3) 5.0 T8 41 31 2.8 42 983
(CPI) | | | _ 028 | 4
Scarecrow (P1) | 10,0 82 26 25 1.6 MNIA 531
(CPI) 0.3
Py=4.554 MW
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Injected Power (MW)
WO WO wo

Lohr APS2002 Florida

ECH Reliability is Comparable to NBI

14 Consecutive shots with 4 gyrotrons
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CVD Diamond Windows
for Gyrotrons
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Diamond is the Answer, but with a
Learning Curve

AJ

DN FACILITY

r
e

Chemical Vapor Deposition Scarecrow window found broken
diamond disks for high power under the aluminum braze when
gyrotron output windows the leaking flange was removed

DIll-D

NATIONAL FUSION FAC
SSSSSSSS

Lohr APS2002 Florida




Early difficulties with CVD diamond
windows...

 Corrosion of aluminum based flange brazes

- Stresses arising during the braze process

- Surface contamination arising during brazing

- Surface contamination arising during bakeout

- Surface contamination arising during cleaning(!)
* Hydrogen “end bonding” increasing losses
 Failure due to arc initiated in dummy load
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...have been addressed and resolved

- Hard brazes, Au/Cu and others have been successful
 Arc detection and prevention are high priority
- More measurements of tan(o) are being made

- Raman scattering has been developed to diagnose
contamination

- Surface cleaning by grit blasting with alumina and
"aqua regia" acid etch have been successtiul
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CVD Diamond Window IR View

A 5.0 second pulse at 800
kW, 110 GHz from the CPI
Tin Man gyrotron at DIlI-D

Window parameters:
— 1.1 mm thick
— 50 mm clear aperture
— tan(8)<5x10
— K>1.2 kW/m-K (4xCu)
— Yield stress ~350 MPa

— ~$100k
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CVD Diamond Thermal Performance
Measurements are Difficult

(coating? higher emissivity ?)
200 \
140 \ Scarecrow (1.7mm improved edge cooling)
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Lion(1.7mm improved edge cooling)
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Typical installation and geometry

— — — ~ for window IR measurements
Time (msec)
Thermal equilibrium after ~3 sec, but CVD diamond is the viable solution
substantially different performance to the gyrotron window problem
from window to window possibly due
to unintended contaminant coatings NDN"’N-DW
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ECH and ECCD Experiments on DIII-D
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ECH: Transport Barrier
Formation with Perpendicular Injection

sy F Pre | [ 1 [—m[m -1
uJ ﬂ—]:Hﬂ 1 :in-ﬂi - ECH applied early to a
d] o~ discharge with negative
Te (keV) :: central shear
2 ® X.<0.1x"°
" Barrier lies just inside the
R 2V_ resonance
6 - o 08 - ETG mode stabilized by the
omson® .

W Lo ECE {os large Shafranov shift
it ’ o
ol ff  @e= @+ Record T,=15keV for DIll-D

3t '1,,|"”~- MM X~ has been achieved this way
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ECCD Efficiency is High

0.4
b<P>=3.7%
* <B> =2.5%
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0.0 I |
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P

* lcceps 140 KA for Pge=2.2 MW
- High efficiency for off axis ECCD
- Adequate for advanced tokamak
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* The efficiency stays high

for off-axis drive if the plasma
pressure, B, is high, because
the resonant electrons are

far from the trapping boundary.
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Use of ECCD to Suppress Instabilities
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NTM Stabilization

1. Island width for m/n=3/2 ~7 cm

2. -10dB width of jgscp is ~ 8 cm and -3 dB width is about 3 cm

A good match between ECCD and island widths

3. About 1-2 cm accuracy is required, but some misalignment is OK

4. Within the island, =V¥p ~ 0, so the missing bootstrap current
must be restored artificially to stabilize the tearing mode.

5. For Pec~2 MW, jecep = 2 jpootstrap @t the q=3/2 surface

Adequate driven current with available power
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Hitting the Islands with ECCD

g The ECCD can
be placed at the
island location
by:

 Changing B+

* Moving the
plasma

- Changing the
injection angle

The absent current can be restored
by ECCD, but the current must

be driven exactly at the islands to
within about +1-2 cm.

~x1 cm radial
accuracy required

Power is absorbed at the intersection
Of the rf beam and the 2f__ resonance

Optically Optically
Thick Thin
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The ECCD can
be placed at the

o 1 island location
/'t“:e . \ launch
/ N \e  DY:
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 Moving the

plasma
- Changing the
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facet ang=38.0 deg
lil ang=67.1 deg

/LS
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island location
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- Changing B+

* Moving the
plasma

- Changing the
injection angle

~x1 cm radial
accuracy required
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Hitting the Islands with ECCD
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NTM Stabilization: Varying
Tokamak B+ Varies ECCD Location

For this B; the NTM begins
to die during B sweep

-1.45
=1.50

-1.55
-1.60

15 - L When By is constant at the
E n= 2 Mimov ampl. (G}

':'E Toroidal Field {T)

10 W proper value, as determined
My : by the B, sweep, the mode is

5

\y, .Hub&gl"]“ﬂﬂﬁ%ﬁ' imi
. completely eliminated
ol AN
20 1 Mw ECCD ; When the mode is eliminated,
3000 3500 4000 i
Time (me) plasma pressure increases

Two shots...one with B; sweep,
one with constant B;
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Modulating and Controlling
the ECH Power
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Output Power Modulation

Sinusoidal modulation of a single gyrotron. A 30%

200

L e

400
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The shape of the time response of T, at the
location of the ECH power deposition gives
the local incremental electron energy

confinement time direct
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decrease in the beam energy yields a 20% decrease

in the beam current and a 100% modulation depth.

Modulation at up to 10 kHz has been demonstrated.
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Use of square wave n%[m(;iulation of all the ECH
gyrotrons to study deposition
profiles and energy transport
in the electron channel
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Feedback Control of ECH Power

10074
2.0
g
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< .
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Summary

ECH is a reliable tool for magnetic fusion research

High power millimeter sources and components have been
developed

Physics of ECH/ECCD is understood
A unique new group of experiments is being explored
— control of MHD instabilities
— transport studies
— profile control
— advanced tokamak operation
Future plans for the DIII-D installation
— 3 new gyrotrons 110 GHz, 1 MW, 10 sec pulse length
— 8 gyrotrons operating from 4 flexible launchers
— ~5 MW injected rf power by 2005
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