Capability of the 110 GHz Installation on the DIII-D Tokamak

John Lohr

Y.A. Gorelov, K. Kajiwara, Dan Ponce, R. Prater, R.W. Callis, J.R. Ferron, C.M. Greenfield,
R.J. LaHaye, R.I. Pinsker, M.R. Wade^{*}, R.A. Ellis[†]

DIII-D National Fusion Facility General Atomics *Oak Ridge National Laboratory † Princeton Plasma Physics Laboratory

2002 Meeting of the American Physical Society Division of Plasma Physics Orlando Florida

Outline

- The 110 GHz ECH system
 - Installation
 - Components
 - Capabilities and performance
 - CVD Diamond windows
- Experiments
 - Transport and power deposition (Casper LO1.003)
 - ECH/ECCD efficiency (DeGrassie LO1.011)
 - NTM suppression (Petty LO1.007, Prater QP1.075)
 - Feedback control of injected rf power (Wade LO1.008)
 - Advanced tokamak operation (Murakami Fl1.002, Greenfield LO1.002, St. John RP1.032)
- Summary and future plans

The DIII-D ECH Installation

The DIII-D ECH System

Transmission Line Efficiency >80% for 100m Length

The DIII-D ECH System

Waveguide Lines at DIII-D

ECH Waveguides at DIII-D

The DIII-D ECH System

Articulating Launchers

•Three fully articulating dual launchers are now installed on DIII-D •Two launchers have fast mirror scan capability

Articulating Launcher Scan

Articulating Launcher Scan

The DIII-D ECH System

Polarizer Pairs Give Arbitrary Elliptical Polarization in Vacuum Under Remote Control

Polarizer Pairs Give Arbitrary Elliptical Polarization in Vacuum Under Remote Control

Polarizer Pairs Give Arbitrary Elliptical Polarization in Vacuum Under Remote Control

The DIII-D ECH System

ECH Gyrotron Vault

DECH Gyrotron Vault

The DIII-D ECH System

Dummy Loads for 1 MW cw (they're not just pieces of pipe)

Unique Components

Vacuum pumpouts

Bellows and other specialized components

Waveguide switches

Lohr APS2002 Florida

Corrugated vacuum waveguides

Miter bends and polarizing miter bends

Modern 1 MW Class Gyrotrons at 75-170 GHz

- Production, R&D
- CPI (US)
- Gycom (Russia)
- Thales (France)
- Toshiba (Japan)
- R&D
- MIT, CCR, UMd, UW (US)
- IAP, StPSTU (Russia)
- FzK, CRPP, U. Stuttgart (EU)
- JAERI, Fukui Univ. (Japan)
- U. Helsinki (Finland)
- deBeers, Fraunhofer Inst (EU)

DIII-D Gyrotron Parameters and Power Balance

GYROTRON	PULSE	V _{beam}	Ibeam	EFF	P _{win}	Pmon	Para
NAME	LENGTH	(kV)	(Ã)	(%)	(kW)	(kW)	(k W)
(mfg)	(SEC)	È É		l` ´	(%)	(%)	l` í
Katya (G1)	2.1	72	31	31	33	173	699
(Gycom)					3.7	25	
Boris (G2)	2.1	69	30	37	30	136	775
(Gycom)					3.9	18	
Natasha (G3)	2.1	69	30	30	25	123	611
(Gycom)					4.1	20	
Tin Man (P2)	5.0	80	40	30	2.1	69	955
(CPI)					0.22	7	
Lion (P3)	5.0	78	41	31	2.8	42	983
(CPI)					0.28	4	
Scarecrow (P1)	10.0	82	26	25	1.6	N/A	531
(CPI)					0.3		

 P_{Σ} =4.554 MW

ECH Reliability is Comparable to NBI

14 Consecutive shots with 4 gyrotrons

CVD Diamond Windows for Gyrotrons

Diamond is the Answer, but with a Learning Curve

Chemical Vapor Deposition diamond disks for high power gyrotron output windows

Scarecrow window found broken under the aluminum braze when the leaking flange was removed

Early difficulties with CVD diamond windows...

- Corrosion of aluminum based flange brazes
- Stresses arising during the braze process
- Surface contamination arising during brazing
- Surface contamination arising during bakeout
- Surface contamination arising during cleaning(!)
- Hydrogen "end bonding" increasing losses
- · Failure due to arc initiated in dummy load

...have been addressed and resolved

- Hard brazes, Au/Cu and others have been successful
- Arc detection and prevention are high priority
- More measurements of $tan(\delta)$ are being made
- Raman scattering has been developed to diagnose contamination
- Surface cleaning by grit blasting with alumina and "aqua regia" acid etch have been successful

CVD Diamond Window IR View

- A 5.0 second pulse at 800 kW, 110 GHz from the CPI *Tin Man* gyrotron at DIII-D
- Window parameters:
 - 1.1 mm thick
 - 50 mm clear aperture
 - $tan(\delta) < 5x10^{-5}$
 - K>1.2 kW/m-K (4xCu)
 - Yield stress ~350 MPa
 - **~**\$100k

CVD Diamond Thermal Performance Measurements are Difficult

(coating? higher emissivity?)

Typical installation and geometry for window IR measurements

CVD diamond is the viable solution to the gyrotron window problem

ECH and ECCD Experiments on DIII-D

ECH: Transport Barrier Formation with Perpendicular Injection

- ECH applied early to a discharge with negative central shear
- $X_e < 0.1 X^{neo}$
- Barrier lies just inside the 2v_{ce}resonance
- ETG mode stabilized by the large Shafranov shift
- Record T_e=15 keV for DIII-D has been achieved this way

Power deposition profile width is ~8 cm at the 10% contour

ECCD Efficiency is High

I_{ECCD}≤ 140 kA for P_{RF}=2.2 MW
High efficiency for off axis ECCD
Adequate for advanced tokamak

• The efficiency stays high for off-axis drive if the plasma pressure, β , is high, because the resonant electrons are far from the trapping boundary.

Use of ECCD to Suppress Instabilities

NTM Stabilization

- 1. Island width for $m/n=3/2 \sim 7 \text{ cm}$
- 2. -10dB width of j_{ECCD} is ~ 8 cm and -3 dB width is about 3 cm

A good match between ECCD and island widths

- 3. About 1-2 cm accuracy is required, but some misalignment is OK
- 4. Within the island, $= \nabla p \sim 0$, so the missing bootstrap current must be restored artificially to stabilize the tearing mode.
- 5. For $P_{\text{EC}} {\sim} 2$ MW, $j_{\text{ECCD}} {\approx} 2 \; j_{\text{bootstrap}}$ at the q=3/2 surface

Adequate driven current with available power

f=110.0 GHz facet ang=8.0 deg tilt ang=67.1 deg The ECCD can be placed at the island location rf launch by: The absent current can be restored • Changing B_{T} by ECCD, but the current must Moving the be driven exactly at the islands to plasma within about +1-2 cm. • Changing the injection angle ~±1 cm radial Power is absorbed at the intersection accuracy required Of the rf beam and the 2f_{ce} resonance Optically Optically Thick Thin

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

• Changing B_T

Moving the plasma

• Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

• Changing B_T

Moving the plasma

• Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

The absent current can be restored by ECCD, but the current must be driven exactly at the island. How can you hit the islands exactly?

Power is absorbed at the intersection Of the rf beam and the $2f_{ce}$ resonance

The ECCD can be placed at the island location by:

- Changing B_T
- Moving the plasma
- Changing the injection angle

~±1 cm radial
accuracy required

NTM Stabilization: Varying Tokamak B_T Varies ECCD Location

Two shots...one with $B_{\rm T}$ sweep, one with constant $B_{\rm T}$

For this B_T the NTM begins to die during B_T sweep

When B_T is constant at the proper value, as determined by the B_T sweep, the mode is completely eliminated

When the mode is eliminated, plasma pressure increases

Modulating and Controlling the ECH Power

Output Power Modulation

Sinusoidal modulation of a single gyrotron. A 30% decrease in the beam energy yields a 20% decrease in the beam current and a 100% modulation depth. Modulation at up to 10 kHz has been demonstrated.

The shape of the time response of T_e at the location of the ECH power deposition gives the local incremental electron energy confinement time directly.

Use of square wave modulation of all the ECH gyrotrons to study deposition profiles and energy transport in the electron channel

Feedback Control of ECH Power

Summary

- ECH is a reliable tool for magnetic fusion research
- High power millimeter sources and components have been developed
- Physics of ECH/ECCD is understood
- A unique new group of experiments is being explored
 - control of MHD instabilities
 - transport studies
 - profile control
 - advanced tokamak operation
- Future plans for the DIII-D installation
 - 3 new gyrotrons 110 GHz, 1 MW, 10 sec pulse length
 - 8 gyrotrons operating from 4 flexible launchers
 - ~5 MW injected rf power by 2005

