3-D EQUILIBRIUM AND MAGNETIC ISLAND DUE TO ERROR MAGNETIC FIELD IN THE DIII-D TOKAMAK

L.L. Lao, M.S. Chu, M. Schaffer, J. Luxon, R.J. La Haye, K.I. You,¹ E. Lazarus,² S.P. Hirshman²

> General Atomics, San Diego, CA, U.S.A. ¹ Korea Basic Science Institute, Korea ² Oak Ridge National Laboratory, U.S.A.

44nd Annual APS Division of Plasma Physics Meeting Orlando, Florida November 11 - November 15, 2002

MOTIVATION / BACKGROUND

- Enhanced confinement of H-mode discharges often leads to large edge density and temperature pedestals with very narrow widths ~ 1-4 cm
- Accurate determination of the edge separatrix location becomes crucial for proper interpretation and understanding of the physical processes governing H-mode discharges
- A 1-4 cm difference between the separatrix vertical position determined from EFIT magnetic analysis and those inferred from Thomson T_e measurements has been observed
- New I-coils are installed inside the DIII-D vacuum vessel

12-coil internal set available for experiments 2003

QUESTIONS TO ANSWER

- Are the difference between the edge separatrix vertical positions as determined from EFIT and Thomson T_e due to real physical effects ?
- What physical processes may lead to this difference ?
- What are the effects of externally imposed toroidally asymmetric magnetic field or error magnetic field on the edge separatrix boundary ? The new I-coils ?
- How important are the plasma responses ?

OUTLINE / SUMMARY

- A 1 4 cm difference still exists between the separatrix vertical position determined from EFIT magnetic analysis and those inferred from Thomson T_e measurements
 — Removal of metal plate on n1-coil makes little difference
- Perturbative calculations without plasma response indicate a small toroidal asymmetry in the external coil location can introduce significant 3-D magnetic effects such as formation of edge stochastic layers and magnetic islands into the magnetic topology
- Response of error magnetic field correction coils (C-Coils) suggest that plasma response may play a crucial role
 - C-coil currents tend to increase the error magnetic field due to the external shaping coils
- A more self-consistent approach including plasma response is being formulated

SEPARATRIX LOCATION IS TYPICALLY DETERMINED BY EXTRAPOLATING EXTERNAL MAGNETIC MEASUREMENTS INWARD

- EFIT extrapolate magnetic measurements inward assumed discharge in a 2-D equilibrium state
 - 41 flux loops: ψ
 - 73 magnetic probes: $\nabla\psi$
 - Equilibrium relates 2nd derivatives to ψ and $\nabla\psi$
 - Separatrix location defined by largest closed flux surface enclosed by limiter
- Main magnetic probes are at ϕ = -322°, some at -67°
 - Separatrix location largely represents magnetic topology at ϕ = -322°
- Thomson measurements are at ϕ = -120°

SEPARATRIX LOCATION CAN ALSO BE INFERRED FROM HYPERBOLIC TANGENT FIT TO THOMSON T_e PROFILE

- H-mode discharges only
- 3 parameters amplitude, radius, and width Tanh fit to T_e
- $Z_{TS} = Z_{SYN} + 0.5 \Delta Z_{WIDTH}$
- Previous analyses indicate some consistency with UEDGE divertor solution with this choice of separatrix location
- Thomson measurements are located at the poloidal plane $\phi = -120^{\circ}$

SEPARATRIX LOCATIONS FROM EFIT AND THOMSON AGREE WELL IN LOWER SINGLE-NULL DISCHARGES

• From 2001 resistive wall mode stabilization experiment, $\beta_N \sim 2 \beta_{NO_WALL}$

SEPARATRIX LOCATIONS FROM EFIT AND THOMSON CAN DIFFER BY 1-2 cm IN DOUBLE-NULL DISCHARGES

• From 2001 AT stability experiment, $\beta_N \sim 4$, $q_{95} \sim 4.2$

ERROR FIELD CORRECTION COIL CURRENT APPEARS TO PLAY A ROLE IN THE EFIT-THOMSON SEPARATRIX LOCATION DIFFERENCE

• From 2001 AT stability experiment, $\beta_N \sim 3.8$, $q_{95} \sim 5.1$, higher C₇₉ current

SEPARATRIX LOCATIONS FROM EFIT AND THOMSON CAN DIFFER BY 1-4 cm IN UPPER SINGLE-NULL DISCHARGES

• From 2002 AT ECCD experiment

Lao APS 2002

10

CURRENT IN F7A APPEARS TO PLAY A ROLE IN THE EFIT-THOMSON SEPARATRIX LOCATION DIFFERENCE

• From 2001 QH mode experiment using 1.3 MA and 1.6 MA panels

DATABASE SURVEY

- Shot range ~ 97600 105500, 1999 early 2001 using an IDL code
- H-mode only with 1 sec < time < 4 sec (based on electron edge pedestal height and width) and JT-like control room EFITs (EFIT01), sorted by
 - Lower single null (LSN), δR_{SEP} < -1 cm
 - Double null (DND), -1 cm < δR_{SEP} < 1 cm
 - Upper single null (USN), δR_{SEP} > 1 cm
- EFIT-Thomson separatrix difference generally within acceptable bound for LSN, but can differ by 1-4 cm in DND and USN cases
 - No correlation with electron edge pedestal pressure, β_{P} and $\beta_{\text{N}},$ lower triangularity
 - Weak correlation with upper triangularity and I_i
 - Some correlation with F7A and C-Coil currents, and q_{95}

DATABASE SURVEY INDICATES SOME CORRELATION WITH CURRENTS IN F7A AND C-COIL

• Main sorting variables: DND, USN, and LSN. H-mode only, 1999 - early 2001

THE EFFECTS OF ERROR FIELD ON MAGNETIC SURFACES ARE ESTIMATED USING A PERTURBATIVE APPROACH

- F-coil irregularities has recently been remeasured
 - F7A has largest ~ 1.2 cm radial shift as in previous measurements [1]
- Perturbative 3-D calculations
 - 3-D effects taken to be small, plasma assumed to remain in a 2-D axisymmetric equilibrium state
 - 3-D corrections to the magnetic surfaces are then computed by superimposing the asymmetric external magnetic field onto the background toroidally symmetric magnetic field due to the plasma using a Green's function approach

-	PL	.01	L	NE	cod	e
		_				

La Haye and Scoville, Rev. Sci. Instrum. 62 (1991) 2146

	Toroidal	
F-coil	Angle	Δ r(cm)
F1A	24.237	0.210
F2A	-16.500	0.250
F3A	3.336	0.322
F4A	9.155	0.247
F5A	-37.307	0.271
F6A	-153.112	0.554
F7A	-101.527	1.206
F8A	-81.411	0.361
F9A	-95.623	0.310
F1B	-58.591	0.125
F2B	-43.359	0.295
F3B	-73.825	0.277
F4B	-72.300	0.185
F5B	-92.760	0.261
F6B	-108.792	0.692
F7B	-137.713	0.739
F8B	-163.708	0.604
F9B	-113.650	0.534

Radial Deviations of F-coil from B-coil (Luxon, Schaffer)

A 1-2 cm RADIAL SHIFT IN F-COILS CAN LEAD TO FORMATION OF A LARGE EDGE STOCHASTIC REGION

• 3-D perturbative calculations based on QH-mode USN discharge 105828 at 3000 ms

SEPARATRIX LOCATIONS FROM EFIT AND THOMSON DIFFER BY 2-4 cm IN THIS UPPER SINGLE-NULL DISCHARGE

• From 2001 QH mode experiment using 1.6 MA shape control panel

A SMALL TOROIDAL ASYMMETRY OF F-COIL LOCATION CAN PRODUCE A LARGE EDGE STOCHASTIC REGION

 DIII-D USN discharge 105828.03000

C-COIL RESPONSES ARE NOT CONSISTENT WITH OBSERVATIONS WITHOUT PLASMA RESPONSE

- Main sorting variables: DND, USN, and LSN. H-mode only, 1999 early 2001
- Simulations based on USN discharge 105828.03000 with asymmetric F-coils + Ccoils and with C-coils only

C-COIL CAN PRODUCE LARGE MAGNETIC ISLANDS AT OUTER RATIONAL q SURFACES WITHOUT PLASMA RESPONSE

- F-coil shifted uniformly along the radial direction at ϕ = 298 degree to reduce the C-coil effects at q = 2 and 3 surfaces
- Simulations based on DIII-D USN discharge 105828.03000

 Δr = 5 cm at ϕ = 198 degree

SUMMARY

 A 1 - 4 cm difference still exists between the separatrix vertical position determined from EFIT magnetic analysis and those inferred from Thomson T_e measurements

- Removal of metal plate on n1-coil makes little difference

- Perturbative calculations without plasma response indicate a small toroidal asymmetry in the external coil location can introduce significant 3-D magnetic effects such as formation of edge stochastic layers and magnetic islands into the magnetic topology
- Response of error magnetic field correction coils (C-Coils) suggest that plasma response may play a crucial role
 - C-coil currents tend to increase the error magnetic field due to the external shaping coils
- A more self-consistent approach including plasma response is being formulated

