Modeling Current Hole Tokamaks1 T.H. JENSEN, GA —

Three examples of experimentally obtained current hole tokamaks have been reported [1,2,3]. For the modeling discussed here, the key assumptions made are: i) existence of an impediment to poloidal currents [4] resulting in beta poloidal \sim unity and ii) that the plasma current is driven by a radially outwards mass flow resulting from neutral beam injection. Quite detailed agreement is found between experimental results [3] and modeling results. Using the experimentally observed rates of beam injection density and the Spitzer conductivity (in the toroidal direction) for the observed temperature and effective Z, the model provides a current hole with a size similar to that observed. The significance of this is that current hole tokamaks driven by neutral beam injection may be an attractive way for realizing dc operation of tokamaks.

1Work supported by US DOE Grant DE-FGF03-95ER54309.