


#### ADVANCED TOKAMAK RESEARCH ON DIII-D

#### Realizing the Ultimate Potential of the Tokamak

Simultaneously integrated

- Improvement of the tokamak concept toward
  - High duty factor (ideally, steady state)
    - > Self-generated bootstrap current  $\Rightarrow$  high  $\beta_r$
    - > Current drive
  - High power density  $\Rightarrow$  high  $\beta_T$ 
    - > Improved stability
  - Compact (smaller)
    - > Improved confinement  $\Rightarrow$  high  $\tau_{E}$
- A self-consistent optimization of plasma physics through
  - MHD stability control
    - > Magnetic geometry (plasma shape)
    - > Pressure and current profiles
    - > Resistive wall mode mitigation [Garofalo, L01.004]
    - > NTM avoidance via high  $q_{min}$
  - Plasma profile control
    - > Current, pressure, density, rotation, radiation,...
  - Strong experiment simulation coupling



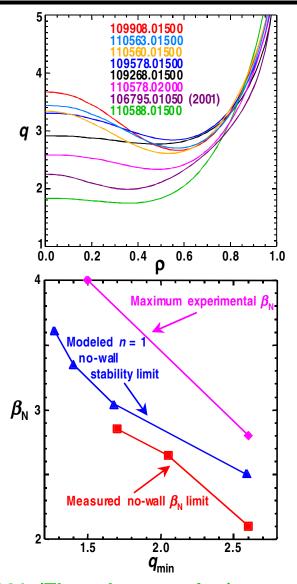
**Bootstrap Current** 

Competing requirements of high power density and high bootstrap fraction necessitate operating near the pressure limit (high  $\beta_N$ )



### **EFFORTS IN 2002 FOCUSED ON IMPROVED** CONTROL OF ADVANCED TOKAMAK PLASMAS

Previously (2001): High β Advanced Tokamak plasmas demonstrated:

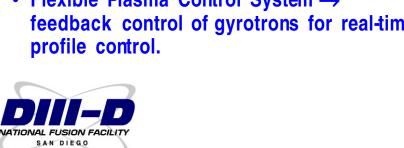

$$\beta = 4.2\%$$
  $\beta_{N-} \ge 10$  for 600 ms (~4  $\tau_{E}$ )

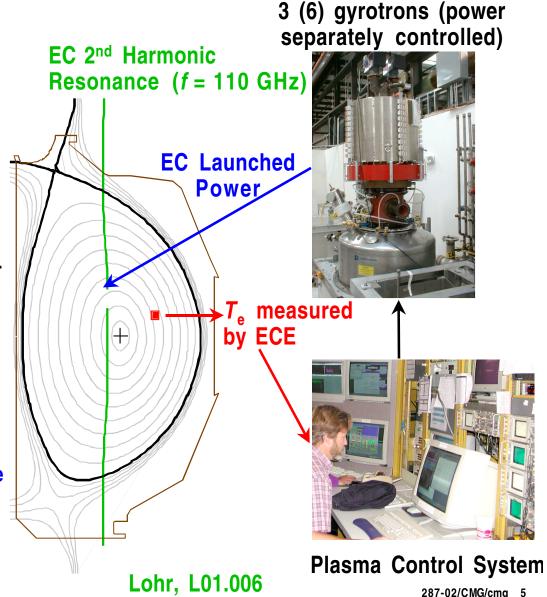
- Emphasis in 2002: Profile control looking towards steady-state:
  - Optimize target q profile for simultaneous high  $\beta$  and high noninductive current fraction
    - > Evaluate MHD stability at high β and high q
  - Current profile control with ECCD in two different AT regimes
    - > Discharges with  $\beta_N > 3$  and  $f_{NI} > 90\%$  obtained.
  - Control of kinetic profiles with ECH
    - > Feedback control of  $T_{\rm e}$
    - > Density profile control in QDB regime



# A RANGE OF q PROFILES ARE EVALUATED TO DETERMINE THE BEST q PROFILE FOR AT REGIMES

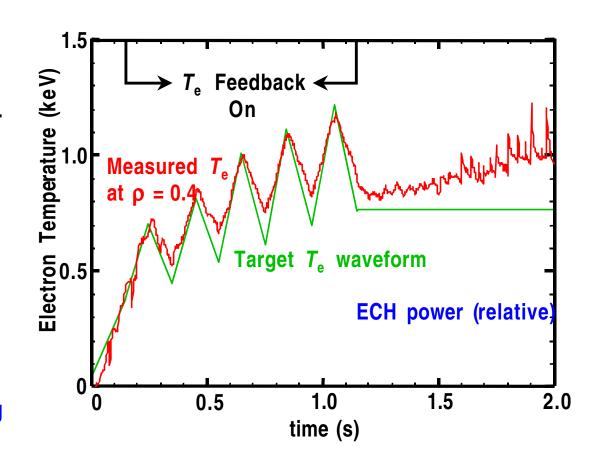
- Demand for high bootstrap fraction makes high  $q_{\min}$  appear favorable.
  - Wide variety of current profile shapes available via control of L-H transition and heating during current ramp
- However, no-wall  $\beta_N$  limit and achievable  $\beta_N$ decrease as  $q_{\min}$  increases with typical DIII-D AT pressure profiles.
- Further optimization:
  - Consider competing requirements of high beta and high bootstrap fraction.
  - Improved pressure and current profile control and plasma shaping may allow access to higher  $\beta$  with high q.



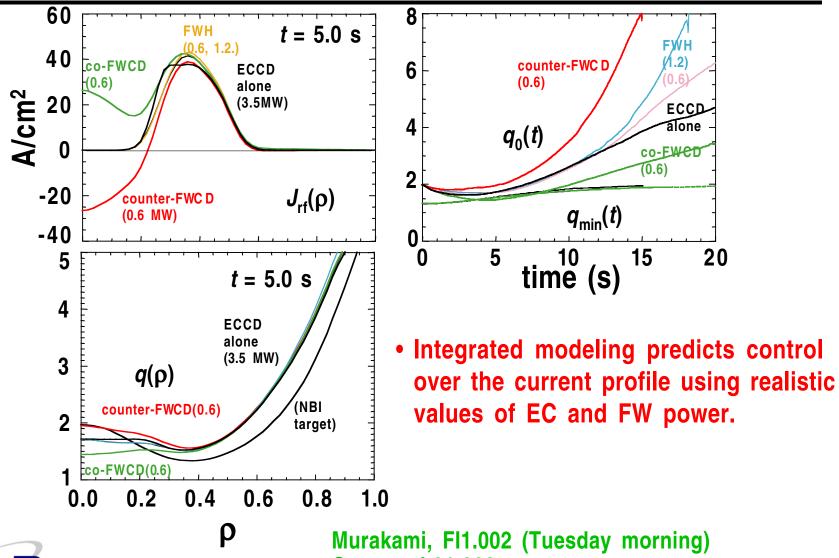

# PROGRESS IN 2002 UTILIZED EXPANDED ELECTRON CYCLOTRON HEATING (ECH) AND CURRENT DRIVE (ECCD) CAPABILITIES

#### Definitions:


- Electron Cyclotron Heating (ECH): Radially launched EC waves, localized heating with no current drive.
- Electron Cyclotron Current Drive (ECCD): Tangentially launched EC waves, localized heating + current drive.
- Flexible launchers allow waves to be launched in a variety of directions:
  - Vertical adjustment → radial position control.
  - Toroidal adjustment → co- or counter-ECCD or ECH.
- Gyrotrons supply up to 2.7 MW of EC power at 110 GHz.
  - Up to 4 MW anticipated available in 2003
- Flexible Plasma Control System → feedback control of gyrotrons for real-time profile control.






### REAL-TIME CONTROL OF $T_{\rm e}$ HAS BEEN DEMONSTRATED WITH BOTH ECH AND NBI

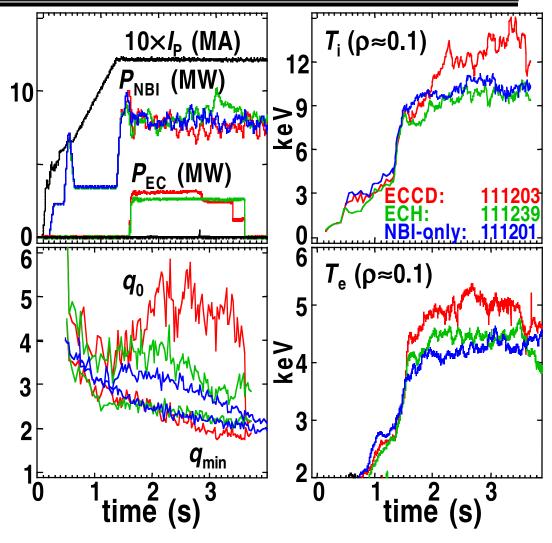
- Demonstration of real-time T<sub>e</sub> control:
  - ECH deposition at  $\rho \approx 0.4$
  - PCS feedback using ECE measurement at  $\rho \approx 0.4$  as sensor
- Applications include improved control over AT target plasma formation.
  - $T_e$  control  $\rightarrow q$  profile evolution control
  - More reproducible
  - Wider density range available
- Capability can be extended using multiple ECE channels and ECH launchers.





#### AT EXPERIMENTS ARE DESIGNED WITH THE AID OF SIMULATIONS BASED ON THEORY AND PREVIOUS EXPERIMENTS

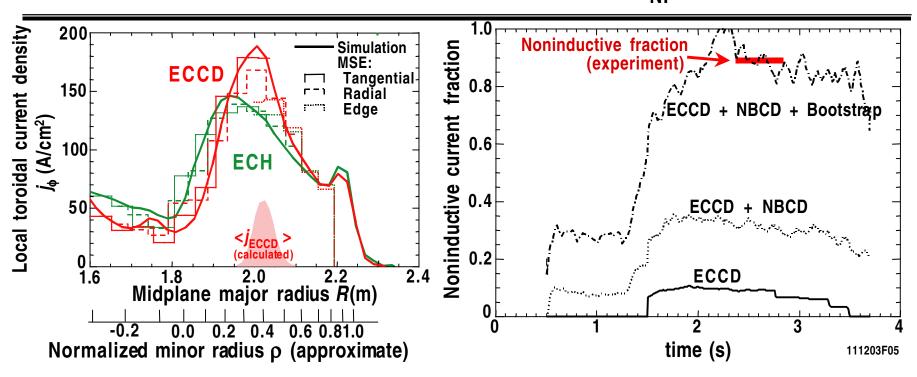





**Casper**, **L01.003** St. John, RP1.032 (Thursday afternoon) 287-02/CMG/cmg 7

## ECCD CURRENT PROFILE CONTROL DEMONSTRATED IN HIGH BOOTSTRAP AT REGIME

#### ECCD results in:


- Current profile control consistent with simulations.
  - > Also seen in QDB regime.
- ITB formation.
  - > Facilitated by changes in q profile due to current drive.
- Profile changes not seen in NBIonly and ECH cases.





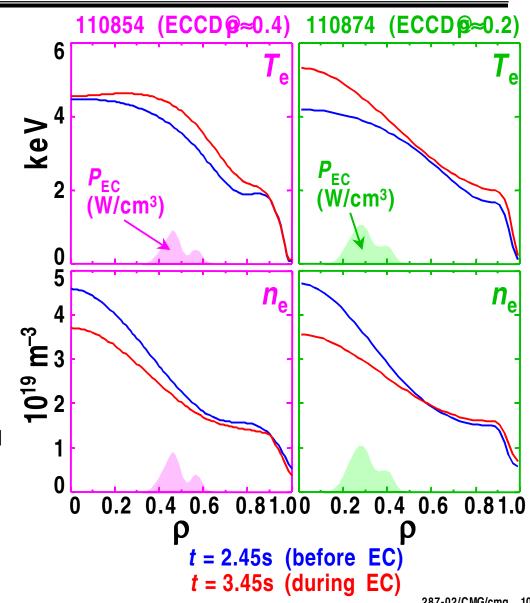
(Five gyrotrons for 2 sec aimed at  $\rho \approx 0.4$ )

# CONTROL OF THE CURRENT PROFILE VIA ECCD FACILITATES OPERATION WITH $f_{NI} > 85\%$



- Simulated current profiles are consistent with MSE measurements.
- Current density increases in vicinity of ECCD absorption location.
  - $I_{\text{ECCD}}$  ≈ 140 kA with  $P_{\text{ECCD}}$  ≈ 2.5 MW.
- Noninductive current drive fraction maintained with  $f_{\rm NI} > 85\%$  for 0.5 s.




- Nearly stationary discharge with  $f_{\rm NI} > 85\%$  maintained for 1 s with lower  $q_{\min} \approx 1.5$ .

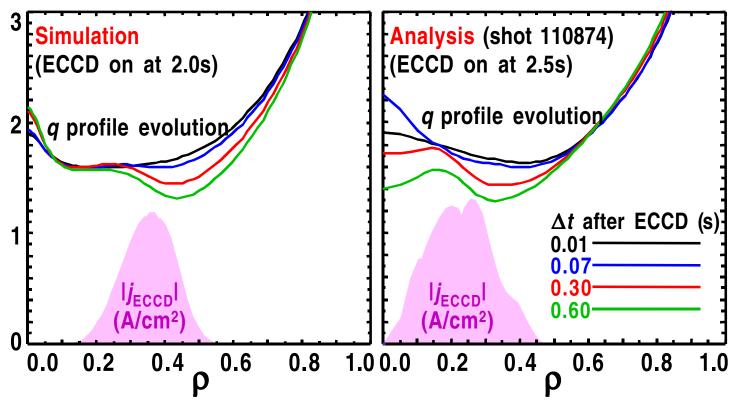
## CORE ECH CONTROLS DENSITY PROFILE IN THE QUIESCENT DOUBLE BARRIER REGIME

- Strongly peaked density profiles limit performance in QDB plasmas.
  - Core impurity confinement
  - Beta limit: β<sub>N</sub> ≈ 2.9 due in part to peaked pressure profile
  - Bootstrap alignment
- Core ECH can broaden density profile.
  - Not strongly dependent on antenna aiming: primarily a heating effect.

#### Impact:

- Core impurities significantly reduced
- Effect on β limit and bootstrap alignment not yet evaluated






#### **SUMMARY: ADVANCED TOKAMAK PROGRESS IN 2002**

- Progress made on understanding beta limits in AT regimes.
  - Open issue: Determination of optimal target q profile.
- ECH/ECCD: a versatile and powerful profile control tool.
  - Feedback control (ECH and NBI) employed during current ramp to control  $T_{\rm e}$  and current profile evolution.
  - ECCD used to make significant modifications to current profile in two different AT regimes:
    - > High Bootstrap Fraction AT
    - > Quiescent Double Barrier Regime
  - Control of density (electron and impurity) profiles demonstrated in QDB discharges using ECH.
- Future capabilities will allow further development toward ultimate goal of 100% noninductive, very high beta discharges:
  - Increased ECH power
  - Fast-wave system reactivation
  - Internal coils for MHD control decoupled with rotation
  - Possible longer-term additions include high(er) triangularity, double-null divertor pump.



### ECCD CAN ALSO CONTROL CURRENT PROFILE IN QUIESCENT DOUBLE BARRIER DISCHARGES



- Simulation and analysis with CORSICA both indicate current profile modification with off-axis ECCD in QDB discharges.
- ECCD's viability as a current profile control tool not limited to single AT regime.

