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SELF-REGULATING ZONAL FLOWS THOUGHT
CRUCIAL TO MEDIATING FULLY SATURATED STATE

* Predicted theoretically to regulate turbulence through time-varying E xB+ (vg) flows
- observed in simulations of core and edge turbulence

e n=0, m=0, radially-localized electrostatic potential structures (linearly stable).
Zonal flows have two dominant branches:

- Low-frequency residual (Rosenbluth-Hinton) mode (f < 10 kHz)
- Higher-frequency Geodesic Acoustic Mode (10-200 kHz)
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Present Work:

- Look directly at the turbulence flow field
to experimentally observe such flows.

- Apply time-delay estimation techniques to
density turbulence: measure vy(t)

- Observe coherent structures in vy(t) with
many of predicted properties: GAMs
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TIME-VARYING TURBULENCE FLoOwS MEASURED VIA 2D DENSITY
FLUCTUATION MEASUREMENTS WITH BES
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TIME-RESOLVED CROSS-CORRELATION TO PERFORM
TIME-DELAY-ESTIMATION ANALYSIS

e Map poloidal displacement of density eddies
Raw data: Poloidally separated Channels Time-lag Correlation
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WAVELET TIME-DELAY-ESTIMATION ANALYSIS PROVIDES
HiGH FREQUENCY RESPONSE

Wavelet-based Cross-Correlation yields 1 0 poeeees MQF'??.W?‘Y.@'?? IIIIIIIII
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« Three TDE methods yield equivalent results M. Jakubowski,
- Wavelet correlation: high frequency response Ph.D Thesis

- Time-shift maximum overlap: improved S/N (low-f)

- Cross-correlation: maximum S/N @ low-f DINn-D

- Cross-correlation used for most data presented here | ===
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COHERENT Vg FEATURE OBSERVED:
ExHIBITS POLOIDALLY EXTENDED, RADIALLY LOCALIZED STRUCTURE

e Measurements obtained in outer region (0.85 < r/a < 1.0) of L-mode discharge

4x10°

Not associated with any MHD activity
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COHERENT Vg FEATURE OBSERVED:
FREQUENCY SCALES WITH LocAL TEMPERATURE

e Semi-coherent feature near 14 kHz on broadband weak velocity turbulence
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EFFECTIVE SHEARING RATE of vg OSCILLATION
CAN AFFECT TURBULENCE

Approximate RMS magnitude of oscillation: Vg = 500m /s

vo  2(500 _
Estimate shearing rate: @ = Al ~ (500m /5) ~0.3x10° 57!

o dr 0.03m

Measured turbulence decorrelation rate: Y ~ 1/tc ~ 1x109 s-1

Comparison: wglgam” < Y, but values are comparable

Oscillation can affect turbulence
and reduce amplitude
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Vg OSCILLATION MODULATES TURBULENCE AMPLITUDE

£ 2.0x10°F T T oeedatcher
e Density fluctuations frequency- ‘?) 1.5E
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BOUT SimuLATION EXHIBITS GEODESIC AcousTic MoDE
AT SIMILAR FREQUENCY TO MEASURED Vg OSCILLATION

BOUT models boundary-plasma turbulence with Braginskii equations in
realistic geometry

Simulation performed with experimental edge profiles from these discharges

Coherent GAM observed in simulation as m=0, localized potential fluctuation

S{8VE,eHk=0.00, f] ()
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SUMMARY

e Time-varying turbulence flows measured by applying TDE to 2D BES data:

exhibits characteristics of zonal flows (GAMs) crucial to regulating turbulence

e (Characteristics of these observed flows (seen 0.85 < r/a < 1.0):

Coherent oscillation near 15 kHz, frequency scales with local temperature

No measurable poloidal phase shift: |lm| < 2
180° radial shift over 3 cm, k,p;< 0.2

wg < 1/7,., but of same order of magnitude: can affect turbulence

Modulates density fluctuation amplitude

e Analysis of these plasmas performed with BOUT edge turbulence simulation code

Predict geodesic acoustic mode (GAM) ExB oscillation seen at same frequency as

observed experimentally

e Next step: Improving density fluctuation diagnostic sensitivity to measure time-
dependent flows more deeply in the plasma core
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[ More detailed discussion, data, and theory in invited talk: j

G. McKee, Talk UI2.005, Friday Morning
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PHASE RELATIONSHIP SUGGESTS RADIALLY-SHEARED FLow ACTION

Visualization of spatial flow field:

Phase shift between radially

and poloidally separated vy Turbulence Flow Field
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SMALL BUT FINITE DENSITY FLUCTUATION ASSOCIATED
WITH COHERENT Vg OSCILLATION

Density Fluctuation,
AZ =6 cm
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vy oscillation observed at

very small normalized amplitude

Not observable when ambient
turbulence is high, near
separatrix

n phase shift suggests
moderately high m ~ 10
(based on limited poloidal
sampling)

Phase Shift of h vs.
Poloidal Distance
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3D BRAGINSKII SIMULATIONS EXxHIBIT GEODESIC AcousTic MODES:
CHARACTERISTICS VERY SIMILAR TO FLOwW OSCILLATION

e Flow spectrum near edge/core
transition region evolves to steady
coherent oscillation (GAM)

ExB Flow Profile

0 20 40 60 80 100
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t, = +/RL, /(2 )

R g, Resistive Balooning Scale Length (~mm)

K. Hallatchek, D. Biskamp,
Phys. Rev. Lett. 86, 1223 (2001), Fig. 1(a)

e BOUT simulation performed
with experimental edge profiles

* Vg, Oscillation observed at

similar frequency to measured
flow oscillation, in excellent
agreement with measurements
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