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An understanding of the limits on qβN is a key to improving the
prospects for steady-state advanced tokamak discharges

• Steady state: requires a large bootstrap current fraction

fBS ∝ βP ∝ qβN.

• Advanced tokamak scenario under study:

– Moderately high q (including q(0), qmin, q95) to optimize fBS.

∗ 1.5 < qmin < 3, q95 ≈ 5.

– High βN to increase fBS and for:

∗ Fusion gain (∝ βτE ∝ (βN/q)(H89/qα).

∗ Efficiency of off-axis electron cyclotron current drive (ECCD).

– Low density:

∗ For relevant collisionality and efficient ECCD.

∗ Requires effective pumping of H-mode divertor exhaust.

Presently in DIII-D, this requires an up/down asymmetric shape.
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Measured and predicted βN limits decrease as qmin increases in
present DIII-D discharges

• Tools for these experiments:

– Discharges with qmin > 2.5.

– A measurement of the no-wall n = 1 βN limit.

• Measured no-wall βN limit increases:

– With lower qmin values.

– With up/down double-null divertor symmetry.

– With lower toroidal field (≈ q95) values.

• Measurements agree with modeling of equilibria with P and J profiles typical

of the experiment.

• Modeling including the DIII-D vessel wall, finds that an advanced tokamak

scenario with a broad pressure profile can have fBS > 0.95, βN > 6 and

stability to n = 1.
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qmin > 2.5 during high βN phase is achieved with an early
H-mode transition

• Increased Te in H-mode slows

rate of current penetration.
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The experimental measurement of the no-wall βN limit is made
by observing the effect on toroidal rotation and stability as the
correcting current for nonaxisymmetric error fields is removed

• For βN above the no-wall limit,

the drag on toroidal rotation is en-

hanced because of the plasma re-

sponse to the nonaxisymmetric er-

ror fields.

• Rotation decreases significantly to

below the critical level for n = 1

resistive wall mode stabilization.
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Measured no-wall βN limit and maximum experimental βN
decrease as qmin increases

• Trend is the same for the n =

1 no-wall stability limit calcu-

lated for model equilibria.

• The predicted stability limit de-

pends on the H-mode edge

pedestal pressure gradient and

current density.
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Increasing the modeled current density in the H-mode pedestal
reduces the predicted βN limit

• 100% of predicted bootstrap

current: βN limit ≈ 2.5

• 73% of predicted bootstrap

current: βN limit ≈ 2.9

• Motivates new diagnostic for

the edge-region current profile.

• Also important: P ′
edge peak

value, width and shape of

P ′
edge profile.
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Stability analysis of equilibria reconstructed from experimental
data does not identify the no-wall βN limit with the resolution

observed in the qmin > 2.5 discharges

• Experiment: βN ≤ 2 stable,

βN ≥ 2.2 unstable.

• Analysis: Within uncertainties,

both stable and unstable

reconstructed equilibria can be

found in the range

1.8 ≤ βN ≤ 2.6.

• Primary

uncertainties:

discharge up/down

symmetry,

pedestal region J .
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Measured n = 1 no-wall βN limit is higher in a symmetric
double-null shape
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Measurement of the no-wall βN limit versus BT (or q95) is
consistent with the trend predicted by modeling
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With the DIII-D conducting wall and broad pressure profiles:
model equilibria with self-consistent bootstrap current profiles
(fBS > 95%) are predicted stable to n = 1 at βN > 6
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• see also Makowski (QP1.061)
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Progress has been made in understanding how to optimize qβN
in advanced tokamak discharges

• Achievable βN values are, thus far, lower in discharges with qmin ≈ 2.5

than in discharges with qmin ≈ 1.5.

• Measured and predicted no-wall, n = 1 βN limits both show:

– A decrease as qmin or q95 increases.

– An increase with double-null divertor up/down symmetry.

• Details of the H-mode edge pedestal region parameters are important to

n = 1 stability.

• An advanced tokamak scenario in DIII-D with βN near 6 and close to 100%

bootstrap current is reasonable if the core pressure profile can be broader

than in present experiments.
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