Comparison of measured and calculated beta limits in DIII-D steady-state scenario discharges

J.R. Ferron, A.M. Garofalo, C.M. Greenfield, T.C. Luce, M. Murakami, P.A. Politzer, A.D. Turnbull, M.R. Wade General Atomics and the DIII-D Team, San Diego, CA

> presented at the 44th Annual Meeting of the Division of Plasma Physics Nov. 11-15, 2002 Orlando, Florida

An understanding of the limits on $q\beta_N$ is a key to improving the prospects for steady-state advanced tokamak discharges

- Steady state: requires a large bootstrap current fraction $f_{\rm BS}\propto eta_{\rm P}\propto qeta_{\rm N}.$
- Advanced tokamak scenario under study:
 - Moderately high q (including q(0), q_{\min} , q_{95}) to optimize f_{BS} .
 - $*~1.5 < q_{
 m min} <$ 3, $q_{
 m 95} pprox$ 5.
 - High $\beta_{\rm N}$ to increase $f_{\rm BS}$ and for:
 - * Fusion gain ($\propto eta au_{\mathsf{E}} \propto (eta_{\mathsf{N}}/q) (H_{\mathsf{89}}/q^{lpha})$.
 - * Efficiency of off-axis electron cyclotron current drive (ECCD).
 - Low density:
 - * For relevant collisionality and efficient ECCD.
 - * Requires effective pumping of H-mode divertor exhaust. Presently in DIII-D, this requires an up/down asymmetric shape.

Measured and predicted $\beta_{\rm N}$ limits decrease as $q_{\rm min}$ increases in present DIII-D discharges

- Tools for these experiments:
 - Discharges with $q_{\min} > 2.5$.
 - A measurement of the no-wall $n = 1 \ \beta_{N}$ limit.
- Measured no-wall β_N limit increases:
 - With lower q_{\min} values.
 - With up/down double-null divertor symmetry.
 - With lower toroidal field ($\approx q_{95}$) values.
- Measurements agree with modeling of equilibria with P and J profiles typical of the experiment.
- Modeling including the DIII-D vessel wall, finds that an advanced tokamak scenario with a broad pressure profile can have $f_{\rm BS} > 0.95$, $\beta_{\rm N} > 6$ and stability to n = 1.

$q_{\min} > 2.5$ during high β_N phase is achieved with an early H-mode transition

• Increased T_e in H-mode slows rate of current penetration.

The experimental measurement of the no-wall β_N limit is made by observing the effect on toroidal rotation and stability as the correcting current for nonaxisymmetric error fields is removed

- For β_N above the no-wall limit, the drag on toroidal rotation is enhanced because of the plasma response to the nonaxisymmetric error fields.
- Rotation decreases significantly to below the critical level for n = 1 resistive wall mode stabilization.

Measured no-wall β_N limit and maximum experimental β_N decrease as q_{\min} increases

- Trend is the same for the n =1 no-wall stability limit calculated for model equilibria.
- The predicted stability limit depends on the H-mode edge pedestal pressure gradient and current density.

Increasing the modeled current density in the H-mode pedestal reduces the predicted β_N limit

- 100% of predicted bootstrap current: β_N limit ≈ 2.5
- 73% of predicted bootstrap current: β_N limit \approx 2.9
- Motivates new diagnostic for the edge-region current profile.
- Also important: P'_{edge} peak value, width and shape of P'_{edge} profile.

Stability analysis of equilibria reconstructed from experimental data does not identify the no-wall β_N limit with the resolution observed in the $q_{\min} > 2.5$ discharges

Measured n = 1 no-wall β_N limit is higher in a symmetric double-null shape

Measurement of the no-wall β_N limit versus B_T (or q_{95}) is consistent with the trend predicted by modeling

With the DIII-D conducting wall and broad pressure profiles: model equilibria with self-consistent bootstrap current profiles $(f_{\rm BS} > 95\%)$ are predicted stable to n = 1 at $\beta_N > 6$

Progress has been made in understanding how to optimize $q\beta_N$ in advanced tokamak discharges

- Achievable β_N values are, thus far, lower in discharges with $q_{\min} \approx 2.5$ than in discharges with $q_{\min} \approx 1.5$.
- Measured and predicted no-wall, $n = 1 \ \beta_N$ limits both show:
 - A decrease as q_{\min} or q_{95} increases.
 - An increase with double-null divertor up/down symmetry.
- Details of the H-mode edge pedestal region parameters are important to n = 1 stability.
- An advanced tokamak scenario in DIII-D with β_N near 6 and close to 100% bootstrap current is reasonable if the core pressure profile can be broader than in present experiments.

