Abstract Submitted for the DPP02 Meeting of The American Physical Society

Sorting Category: 5.6.2 (Experimental)

Comparison of Measured and Calculated β Limits in DIII-D Steady-State Scenario Discharges¹ J.R. FERRON, C.M. GREENFIELD, T.C. LUCE, P.A. POLITZER, A.D. TURNBULL, General Atomics, A.M. GAROFALO, Columbia U., M. MURAKAMI, M.R. WADE, ORNL — In an advanced tokamak discharge a large fraction of the total current should come from bootstrap current (f_{BS}) , which increases with both the normalized beta (β_N) and the minimum value of the safety factor (q_{\min}) . In recent discharges with q_{\min} near 2.5, the achievable $\beta_{\rm N}$ was approximately 2.8, reduced compared to $\beta_{\rm N} \approx 4$ obtained with q_{\min} near 1.5. The trend of decreasing $\beta_{\rm N}$ with increasing q_{\min} is in agreement with the predicted (for n=1) and measured ideal no-wall $\beta_{\rm N}$ limit. The measurement is made by turning off the external field symmetrization current and observing the n=1 resistive wall mode (RWM) that grows when beta is above the no-wall limit. Similar measurements were made to test the dependence of the no-wall beta limit on up/down symmetry of the double-null divertor shape and on toroidal field (or q_{95}). Also reported are modeling studies of high $f_{\rm BS}$ equilibria, with pressure profiles broader than in typical present experiments, that have $\beta_{\rm N}$ limits above those observed in the experiment.

¹Work supported by US DOE Contracts DE-AC03-99ER54463, DE-FG02-89ER53297, and DE-AC05-00OR22725.

Х	Prefer Oral Session
	Prefer Poster Session

J.R. Ferron ferron@fusion.gat.com General Atomics

Date submitted: July 19, 2002 Electronic form version 1.4