OVERVIEW

- Analysis of C I spectral line shapes gives an independent way to distinguish carbon release mechanisms
 - Asymmetry and λ —shift observed in C I 9095 line
 - Effective C I temperatures cluster in ranges 0.8-1.2 and 5-8 eV, according to which sputtering mechanism dominates
 - Physical sputtering causes λ —shift which increases with mass and energy of incident ions
- Relative importance of physical and chemical sputtering supported by flux measurements of C I, C₂ and CD in the DIII-D divertor

$$-\Gamma_{CI}^{\text{molec}} = 52 \times \Gamma_{C_2} + (\Gamma_{CD} - 8 \times \Gamma_{C_2})$$

$$C_x H_V \qquad CH_4$$

WITH PHYSICAL SPUTTERING, HEMISPHERIC VELOCITY DISTRIBUTIONS GIVE RISE TO ASYMMETRIC SPECTRAL PROFILES

Normal View Angled View Sightline Added to red Amplitude (a.u.) 70 80 Amplitude (a.u.) -0.4 0.4 -0.8 0 0.8 Wavelength (Å)

SPECTROMETER VIEWS OF UPPER AND LOWER SINGLE-NULL MAGNETIC CONFIGURATION IN DIII-D VESSEL

A CASE OF CHEMICAL SPUTTERING UPPER SINGLE-NULL – "PUFF AND PUMP" – 4.5 MW

- The flux measurements are consistent with all carbon being produced by chemical sputtering
- The effective C I temperature is also consistent with molecular dissociation

PHYSICAL SPUTTERING DOMINANT USN – 9.5 MW (QDB) – COUNTER INJECTION

 Chemical sputtering appears to dominate startup, then physical sputtering takes over. C I and C II temperatures are high

LARGE λ —SHIFT

CILINE PROFILE BROADENS TO BLUE SIDE OF REST WAVELENGTH

Helium rises throughout beam phase of shot 110387

DETAILS OF PROFILE ANALYSIS

- Maximum entropy technique used to deconvolve source profile from measured one
- Source profile fit with analytically constrained, asymmetric and symmetric components by a non-linear, least squares method
 - Asymmetric part represented by a modified Thompson velocity distribution mapped to λ space

$$f(E)dE = \frac{E}{(E + U_0)^3} h(\theta)G(E)dE$$

where
$$h(\theta) = \cos^{\alpha} (\theta - \delta)$$

- Symmetric part described by single (or double) Gaussian
- In absence of λ fiducial from argon lamp, centroid of profile from detached, inner strike point used to locate λ_0

DECONVOLVED SOURCE PROFILE IS FIT BY SUM OF THOMPSON AND THERMAL COMPONENTS

INTEGRATED INTENSITIES IN THOMPSON AND THERMAL PROFILES

WHERE IS λ_o ?

AN ACCURATE WAVELENGTH CALIBRATION IS NEEDED TO DETECT SMALL λ -SHIFTS

Curvature of Entrance Slit Image in Exit Plane of Spectrometer

Pixel Offset between C I and Ar I Lines with Simultaneous Illumination

SMALL λ —SHIFT

LOW POWER, LOW DENSITY DISCHARGES

- Chemical sputtering dominates in L-mode discharges with 0.5 MW NBI
- Symmetric profile shifted by 0.014 A, consistent with thermal release velocity of CH₄
- Small asymmetric component required to fit blue wing of source profile

IN LOW POWER L-MODE, THOMPSON COMPONENT IS SMALL, THERMAL COMPONENT HAS RESIDUAL BLUE SHIFT

SHOT 110466 - fr 9

RADIAL DECAY LENGTH

EROSION FOOTPRINT DEPENDS ON OPERATING MODE

- T_{eff} (r) and $\Delta\lambda$ (r) tell story at outer strike point
 - Continuous radial map provided by X-point sweep in time
 - Two chord comparison possible when magnetic configuration fixed
- In ELMy H-mode, decay length for physical sputtering is short
- In QDB discharges, physical sputtering stays strong far out in SOL

DURING RADIAL SWEEP, T_{eff} AND $\Delta\lambda$ DECAY RAPIDLY OUTBOARD OF OUTER STRIKE POINT IN HIGH POWER, ELMing H-MODE

SHOT 102332

Absolute shifts in peak relative to V2, 1.1 s

Farther out in the SOL, the asymmetry is still larger

During QH discharges, C I shows strong asymmetry at outer strike point

IMPLICATIONS OF DIFFERENT RADIAL DECAY LENGTHS

- High divertor sheath potential (high T_e) or high energy ions required to produce strong physical sputtering
- In high energy ELMing H-mode discharges, pedestal electrons ejected at ELM onset produce high sheath potential localized near separatrix
 - Physical sputtering should occur during heat conduction phase of ELM only
 - Narrow radial profile consistent with parallel electron heat conduction
- In QDB discharges, high energy ions (5 keV) detected far out in SOL (see Poster RP1.045)
 - High T_i in SOL seen directly by CER, also in heat deposition on divertor
 - Broad radial profile of physical sputtering consistent
 - see Poster RP1.045

SUMMARY

- C I lineshapes indicate relative importance of physical and chemical sputtering
- Experimental data can be fit with sum of asymmetric and symmetric profiles
 - Asymmetric calculated for a Thompson distribution of ejection velocities
 - Symmetric (gaussian) produced by isotropic breakup of C_xH_y molecules
- Physical sputtering accounts for ≥ 50% of C I flux in high power discharges;
 < 15% in low power discharges w/o ELMs
- Flux analysis of C I, CD and C₂ reinforce conclusions from lineshape analysis