Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2¹ and GRYFFIN,² respectively. Comparisons of experiment and simulation results for the fluctuations (amplitude, k-spectra, etc.) and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.

- ¹ F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000) and refs. therein.
- ² W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996).

Supported by USDOE under contracts DE-AC03-99ER54463 and DE-AC05-00OR22725, and grants DE-FG03-97ER54415, DE-FG03-95ER5429, DE-FG02-89ER53296, and DE-FG03-01ER54615.

Experimental Setup

Experimental Setup (close-up)

- Six poloidal arrays of five channels each, all separated by ~ 1 cm
- All interior to ECH resonance radius

◆ Resonance peaks at *r/a* ≈ 0.815, FWHM/*a* ≈ 0.057.
 ◆ Power launched (time-averaged) ≈ 1.33 MW

◆ Peak power ≈ 2.55 MW

Discharge Waveforms

\mathbf{E}_{r} and $\boldsymbol{\omega}_{ExB}$

Shot 107139 ($r_{res}/a = 0.76$ **)**

At r/a = 0.70: $E_r \approx 3.2 \pm 0.7$ kV/m, $\omega_{E \times B} \approx 7.9 \pm 13$ krad/s.

$$v_{ExB} \equiv E_r / B_T \approx 2.0 \pm 0.4$$
 m/s.

▶ Because resonance is farther out ($r/a \approx 0.815$), values may be somewhat different for shot 107138.

T_e Profiles During ECH

T_e(R,t) During Modulated ECH

- \bullet T_e profile quickly equilibrates.
- IdT_e/dRI drops at ECH turn-on inside resonance radius r/a = 0.81, remains ~ const. at resonance radius, increases outside.
 L_{Te} increases during ECH pulse.

Time-averages from ONETWO analysis,

Modulations from electron energy equation (2 MW peak into electrons):

- Power flux in phase with ECH at or outside resonance radius
- Power flux out of phase with ECH inside resonance radius (only transiently)

Fluctuation Analysis

- ◆ Discharge in near steady state (except for ECH modulation) ⇒ improved statistics by "boxcar averaging" (see next slide).
- 512 ms total window \Rightarrow 12 modulation periods
- Digitization at 1 MHz, 8 ms intervals \Rightarrow 96 k samples per data set
- Time dependence of fluctuations determined by moving the boxcar function in time.
- Frequency range of analysis: 50 300 kHz
- Cross powers between poloidally adjacent channels used to enhance S/N.

 Fluctuation data from 8-ms intervals separated by modulation period (40 ms) are grouped together.

Fluctuation Level at Inner Poloidal Array

(*r*/*a* ≈ 0.63)

• Fluctuation level lags ECH by ~ $5\pi/4$ (leads by ~ $3\pi/4$).

Anomaly in channels 4,5 at 1672,1676 ms. ??

Fluctuation Level at Outer Poloidal Array

 $(r/a \approx 0.74)$

- Similar phase relationship as for inner array except for anomalies at 1672,1676 ms. Real??
- Larger fluctuation level on channels 29, 30 due to alignment of view and B-field.

Fluctuation Levels

Average over poloidal pairs:

- Fluctuation level inside resonance layer decreases during ECH.
- Near resonance layer, level starts to rise again at ~ 1670 ms. ??

Poloidal Group Velocity

From time-delay correlations between upper and lower channels of each poloidal array:

No clear modulation of the phase velocity.

FIR Scattering Results

 $k_{\theta} = 1 \text{ cm}^{-1} \Rightarrow \text{chord-average along midplane}$

boxcar-averaged from 1080 to 1480 ms, 10 kHz < f < 1.7 MHz

Fluctuation level "in phase" with ECH waveform.

RMS fluctuation level boxcar-averaged from 1200 to 1600 ms

Fluctuation level "in phase" with ECH waveform.

Turbulence Simulations

- Simulations with GS2 gyrokinetic code and GRYFFIN gyrofluid code include:
 - flux-tube geometry
 - + linear and **nonlinear** cases (with $E \times B$ nonlinearity)
 - full magnetic geometry from EFIT equilibrium
 - trapped electrons (& passing electrons in GS2)
 - one impurity species (C⁺⁶)
 - ✤ *E* × *B* background flow shear **not** included
- Input parameters characteristic of plasma profiles at r/a ≈ 0.7 are varied within their error bars to seek agreement with experiment averaged over an ECH period 1620-1660 ms.
- Sensitivities of turbulence levels and transport fluxes to changes in T_e corresponding to observed modulation are then determined.
 Measured profiles at different times are treated as steady state in the nonlinear simulations.

Absence of background *E* × *B* shear in code requires translation of results toward marginal stability using standard rule of thumb [4]:

•
$$\gamma_{max}$$
, fluxes, and $(\tilde{n}/n)^2$ are reduced by roughly the factor
 $(1 - \omega_{E \times B}/\gamma_{max})$ where [5] $\omega_{E \times B} = \frac{(RB_{\theta})^2}{B} \frac{\partial}{\partial \psi} \left(\frac{E_r}{RB_{\theta}}\right)$

[4] R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasmas 5, 1784 (1998).
[5] T. S. Hahm and K. H. Burrell, Phys. Plasmas 2, 1648 (1995).

Linear Results at r/a = 0.70

• $\gamma > 0$ and peaks at $k_{\theta} \rho_i \approx 0.6$ with $\gamma_{max} \approx 7.6 \times 10^4 \text{ s}^{-1}$

• $\gamma_{max} >> \omega_{E \times B}$ so we will ignore flow shear effects at r/a = 0.7.

- Modes propagate at < 0.3 $v_i^* \approx 0.10$ 0.17 km/s.
- Gryffin gives similar results.

In the following tables,

 $P_e, P_i \equiv$ electron and ion power fluxes through flux surface at r/a = 0.7. $\mathfrak{y} \equiv \rho/q \ (dq/d\rho)$ $\upsilon_{\theta} \equiv$ poloidal velocity of fluctuations yellow: time-average, green: perturbations to T_e (20%) and L_{Te} (24%) General observations:

- P_e, P_i , and \tilde{n}/n increase as R/L_{Ti} increases or \mathfrak{P} decreases.
- P_e is most sensitive to \mathfrak{F}_i is most sensitive to R/L_{Ti} .
- \tilde{n}/n is generally less sensitive.
- Serious discrepancies between simulated and measured v_{θ}
 - Propagation is much faster than predicted, OR
 - Error in measured $E \times B$ velocity E_r/B_T which is subtracted from the measured values.

Nonlinear GS2 Results at r/a = 0.70

	GS2										Ехр
INPUT	Ŝ ⁱ	1.32 1.65								1.29 ± 0.55	
	R/L _{ne}	3.	80	4.56	3.80						3.8 ± 0.8
	R/L_{C6}		0.90		0.00						0.9 ± 0.9
	R/L _{Ti}		5.	20		5.77 6.15					4.4 ±1.8
	R/L _{Te}			8	.34	34 6.95				8.34	8.34 ± 0.20
	T_e/T_i	0.95					1.14 1.14 0.9			95	0.95 ± 0.05
OUTPUT	<i>P</i> _{<i>i</i>} (MW)	1.39	1.26	1.26	1.32	1.59	1.61	2.13	2.12	1.77	1.54
	P_e (MW)	2.07	1.72	2.00	1.63	1.67	2.07	1.86	1.68	1.66	1.67
	ñ/n (%)	1.03	1.01	1.10	1.02	1.12	1.02	1.22	1.29	1.08	0.91
	$\overline{k}_{m{ heta}} ho_i$					0.33					0.29
	$v_{\theta}^{\rm (km/s)}$					0.1-0.17					7.4 ±1.6

- Time-average quantities (except v_{θ}) agree well with experiment (yellow).
- With increase in T_e from time-average case (blue)
 - + \tilde{n}/n decreases, as in experiment
 - + P_e increases, contrary to experiment
- With decrease in R/L_{te} from time-average case (green)
 - \tilde{n}/n increases, contrary to experiment (and intuition!)
 - + P_e is constant, as in experiment
- With simultaneous increase in T_e and decrease in R/L_{te} (in proportion to experiment)
 - \tilde{n}/n increases, contrary to experiment
 - + P_e increases, contrary to experiment

			Ехр					
INPUT	EFIT		-					
	q		3.2 ± 0.5					
	Ŝ ⁱ	0.9	93	1.8	87	74	1.29 ± 0.55	
	R/L _{Ti}	4.	3			4.4 ± 1.8		
	R/L _{Te}	5.75	7.	18	6.46 7.		18	8.34 ± 0.2
	T_e/T_i		1.05		0.95			0.95 ± 0.05
OUTPUT	P_i (MW)	1.01	1.03	1.52	1.50	1.48	1.88	1.54
	P_e (MW)	0.98	1.39	0.87	0.70	0.76	1.42	1.67
	ñ/n (%)	1.44	1.45	1.75	1.54	1.55	1.57	0.91
	$\overline{k}_{\theta} \rho_i$			0.35	0.35	0.40	0.40	0.29
	v _l (km/s)					< 0.17		7.4 ±1.6

Not optimized (Crays decommissioned, code not yet adapted for IBM)

• \tilde{n}/n consistently too large (hard to rectify).

Summary/Conclusions

- Fluctuation levels from BES interior to ECH resonance radius are out of phase with ECH and T_{e} .
 - Consistent with drop in $|dT_e/dR|$, increase in L_{Te} during ECH pulse
- Fluctuations from edge ($\rho \approx 0.9$) reflectometer channel and FIRscattering at low k (chord-averaged) are *in phase* with ECH and T_e .
 - Consistent with rise in $|dT_e/dR|$ outside ECH resonance radius during ECH pulse (\tilde{n} peaks near plasma edge)
- GS2 simulations are consistent with time-averaged measured power fluxes and turbulence characteristics (except poloidal velocity?)
- GS2 simulations are *inconsistent* with ECH modulation of fluctuation level and electron power flux.
- GRYFFIN simulations not optimized, but yield excessively high fluctuation levels.

- Examine discrepancy between experiment and simulation in poloidal propagation velocity of turbulence.
 - Explore uncertainties in E_r inferences, *I.e.*, measurements of poloidal impurity velocity.
- Examine effects of modulations of profiles other than T_e (*e.g.*, T_i) on simulated power fluxes and fluctuation parameters.
- Repeat experiment with BES views just *outside* resonance layer.
- Examine uniqueness of solutions.
- Perform experiment/simulation comparisons on other discharges with different parameters, *e.g.*, with $E_r \approx 0$, $T_e/T_i << 1$, *etc*.
- Run GYRO (J. Candy, *et al.*, invited talk UI2.002, Fri. morning)
 - + Includes background $E \times B$ shear flow
 - Allows profile variation within simulation domain