
Abstract

Experiments to elucidate the nature of electron thermal transport
have been conducted in DIII-D plasmas using modulated off-axis
electron-cyclotron heating (ECH). Density fluctuations were mea-
sured using beam-emission spectroscopy, microwave reflectometry,
and far-infrared scattering.  Simulations of the experiment are per-
formed with the gyrokinetic and gyrofluid flux-tube codes GS21 and
GRYFFIN,2 respectively. Comparisons of experiment and simulation
results for the fluctuations (amplitude, k-spectra, etc.) and transport
fluxes (ion and electron) will be presented for both time-averaged
and modulated quantities.
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Experimental Setup

� inner-wall limited L mode (no ELMs)

� no detectable sawteeth, MHD

� ECH resonance at r/a ≈ 0.815

� ECE channels cover entire minor radius

� BES channels in 5 (vertical) x 6 (radial)
array just inside resonance radius.



ECH resonance

ECE channels

Experimental Setup (close-up)

� Six poloidal arrays of five channels each, all separated by ~ 1 cm

� All interior to ECH resonance radius

ρ = 0.6           0.7          0.8       0.9     1.0

Chs. 1-5   6-10   11-15  16-20   21-25   26-30

BES channels
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ECH Deposition

� Resonance peaks at r/a ≈ 0.815, FWHM/a ≈ 0.057.

� Power launched (time-averaged) ≈ 1.33 MW

� Peak power ≈ 2.55 MW
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Er and ωωωωExB

Shot 107139 (rres/a = 0.76)

At r/a = 0.70: Er ≈ 3.2 ± 0.7 kV/m,  ωE×B  ≈ 7.9 ± 13 krad/s.

υExB ≡ Er/BT ≈ 2.0 ± 0.4 m/s.

➨ Because resonance is farther out (r/a ≈ 0.815), values may be some-
what different for shot 107138.

ECH resonance

(a) (b)



Te Profiles During ECH

� Te data from ECE

heterodyne radio-
meter

� Data de-trended and
boxcar-averaged
over 17 ECH
periods starting at
1298 ms
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Te(R,t) During Modulated ECH

� Te profile quickly equilibrates.

� |dTe/dR| drops at ECH turn-on

inside resonance radius r/a =
0.81, remains ~ const. at reso-
nance radius, increases outside.

� LTe increases during ECH pulse.
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Electron Power Flux

� Power flux in phase with ECH at or outside resonance radius

� Power flux out of phase with ECH inside resonance radius (only
transiently)

Time-averages from ONETWO analysis,
Modulations from electron energy equation (2 MW peak into electrons):
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Fluctuation Analysis

� Discharge in near steady state (except for ECH modulation) ⇒
improved statistics by  “boxcar averaging” (see next slide).

� 512 ms total window ⇒ 12 modulation periods

� Digitization at 1 MHz, 8 ms intervals ⇒ 96 k samples per data set

� Time dependence of fluctuations determined by moving the boxcar
function in time.

� Frequency range of analysis: 50 - 300 kHz

� Cross powers between poloidally adjacent channels used to
enhance S/N.
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“Boxcar Averaging”

� Fluctuation data from 8-ms intervals separated by modulation
period (40 ms) are grouped together.



Fluctuation Level at Inner Poloidal Array

� Fluctuation level lags ECH by ~ 5π/4 (leads by ~ 3π/4).

� Anomaly in channels 4,5 at 1672,1676 ms. ??

(r/a ≈ 0.63)
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Fluctuation Level at Outer Poloidal Array

� Similar phase relationship as for inner array except for anomalies
at 1672,1676 ms. Real??

� Larger fluctuation level on channels 29, 30 due to alignment of
view and B-field.

(r/a ≈ 0.74)
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Average over poloidal pairs:

Fluctuation Levels

� Fluctuation level inside resonance layer decreases during ECH.

� Near resonance layer, level starts to rise again at ~ 1670 ms. ??
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From time-delay correlations between upper and lower channels of
each poloidal array:

Poloidal Group Velocity

� No clear modulation of the phase velocity.

,
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FIR Scattering Results

kθ = 1 cm-1⇒ chord-average along midplane

boxcar-averaged from 1080 to 1480 ms,  10 kHz < f < 1.7 MHz

� Fluctuation level “in phase” with ECH waveform.



Reflectometry Results

RMS fluctuation level boxcar-averaged from 1200 to 1600 ms

� Fluctuation level “in phase” with ECH waveform.

ρ ≈ 0.9
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Turbulence Simulations

� Simulations with GS2 gyrokinetic code and GRYFFIN gyrofluid code
include:

✦ flux-tube geometry
✦ linear and nonlinear cases (with E × B nonlinearity)
✦ full magnetic geometry from EFIT equilibrium
✦ trapped electrons (& passing electrons in GS2)
✦ one impurity species (C+6)
✦ E × B background flow shear not included

� Input parameters characteristic of plasma profiles at r/a ≈ 0.7 are
varied within their error bars to seek agreement with experiment
averaged over an ECH period 1620-1660 ms.

� Sensitivities of turbulence levels and transport fluxes to changes in Te
corresponding to observed modulation are then determined.
Measured profiles at different times are treated as steady state in the
nonlinear simulations.



� Absence of background E × B shear in code requires translation of results

toward marginal stability using standard rule of thumb [4]:

✦ γmax, fluxes, and (ñ/n)2 are reduced by roughly the factor

(1 – ωΕ×Β/γmax) where [5]

[4] R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasmas 5, 1784 (1998).
[5] T. S. Hahm and K. H. Burrell, Phys. Plasmas 2, 1648 (1995).
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Turbulence Simulations (cont.)
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Linear Results at r/a = 0.70

� γ > 0 and peaks at kθρi ≈ 0.6 with γmax ≈ 7.6 × 104 s–1

➨ γmax >> ωΕ×Β so we will ignore flow shear effects at r/a = 0.7.

� Modes propagate at < 0.3 vi* ≈ 0.10 - 0.17 km/s.

� Gryffin gives similar results.

From GS2:



� Pe, Pi, and ñ/n increase as R/LTi increases or    decreases.

� Pe is most sensitive to   ;  Pi is most sensitive to R/LTi.

� ñ/n is generally less sensitive.

� Serious discrepancies between simulated and measured υθ

✦ Propagation is much faster than predicted, OR

✦ Error in measured E×B velocity Er/BT which is subtracted from
the measured values.

Nonlinear Simulation Results at r/a = 0.70

√s

√s

In the following tables,

Pe, Pi ≡ electron and ion power fluxes through flux surface at r/a = 0.7.

≡ ρ/q (dq/dρ)

     υθ ≡ poloidal velocity of fluctuations

yellow: time-average, green: perturbations to Te (20%) and LTe (24%)

General observations:

√s



Nonlinear GS2 Results at r/a = 0.70

GS2 Exp

√s 1.32 1.65 1.29 ± 0.55

R/Lne 3.80 4.56 3.80 3.8 ± 0.8

R/LC6 0.90 0.00 0.9 ± 0.9

R/LTi 5.20 5.77 6.15 4.4 ±1.8

R/LTe 8.34 6.34 6.95 8.34 8.34 ± 0.20

Te/Ti 0.95 1.14 1.14 0.95 0.95 ± 0.05

Pi (MW) 1.39 1.26 1.26 1.32 1.59 1.61 2.13 2.12 1.77 1.54

Pe (MW) 2.07 1.72 2.00 1.63 1.67 2.07 1.86 1.68 1.66 1.67

ñ/n (%) 1.03 1.01 1.10 1.02 1.12 1.02 1.22 1.29 1.08 0.91

k iθθρρ 0.33 -- -- -- 0.29

υυυυθθθθ    (km/s) 0.1-0.17 -- -- -- 7.4 ±1.6



Nonlinear GS2 Results at r/a = 0.70 (cont.)

   

� Time-average quantities (except υθ)  agree well with experiment
(yellow).

� With increase in Te from time-average case (blue)

✦ ñ/n decreases, as in experiment

✦ Pe increases, contrary to experiment

� With decrease in R/Lte from time-average case (green)

✦ ñ/n increases, contrary to experiment (and intuition!)

✦ Pe is constant, as in experiment

� With simultaneous increase in Te and decrease in R/Lte (in propor-
tion to experiment)

✦ ñ/n increases, contrary to experiment

✦ Pe increases, contrary to experiment



Nonlinear GRYFFIN Results at r/a = 0.70

� Not optimized (Crays decommissioned, code not yet adapted for IBM)

� ñ/n consistently too large (hard to rectify).

Gryffin Exp

EFIT 107138 107139 -

q 2.75 3.66 3.2 ± 0.5

√s 0.93 1.87 0.74 1.29 ± 0.55

R/LTi 4.3 6.15 4.4 ± 1.8

R/LTe 5.75 7.18 6.46 7.18 8.34 ± 0.2

Te/Ti 1.05 0.95 0.95 ± 0.05

Pi (MW) 1.01 1.03 1.52 1.50 1.48 1.88 1.54

Pe (MW) 0.98 1.39 0.87 0.70 0.76 1.42 1.67

ñ/n (%) 1.44 1.45 1.75 1.54 1.55 1.57 0.91

k iθθρρ 0.35 0.35 0.40 0.40 0.29

υυυυθθθθ    (km/s) < 0.17 7.4 ±1.6



Summary/Conclusions

� Fluctuation levels from BES interior to ECH resonance radius are
out of phase with ECH and Te.

✦ Consistent with drop indTe/dR, increase in LTe during ECH
pulse

� Fluctuations from edge (ρ ≈ 0.9) reflectometer channel and FIR-
scattering at low k (chord-averaged) are in phase with ECH and Te.

✦ Consistent with rise indTe/dRoutside ECH resonance radius
during ECH pulse (ñ peaks near plasma edge)

� GS2 simulations are consistent with time-averaged measured power
fluxes and turbulence characteristics (except poloidal velocity?)

� GS2 simulations are inconsistent with ECH modulation of fluctuation
level and electron power flux.

� GRYFFIN simulations not optimized, but yield excessively high
fluctuation levels.



� Examine discrepancy between experiment and simulation in
poloidal propagation velocity of turbulence.

➨ Explore uncertainties in Er inferences, I.e., measurements of
poloidal impurity velocity.

� Examine effects of modulations of profiles other than Te (e.g., Ti) on
simulated power fluxes and fluctuation parameters.

� Repeat experiment with BES views just outside resonance layer.

� Examine uniqueness of solutions.

� Perform experiment/simulation comparisons on other discharges
with different parameters, e.g., with Er ≈ 0, Te/Ti << 1, etc.

➨ Run GYRO (J. Candy, et al., invited talk UI2.002, Fri. morning)

✦ Includes background E×B shear flow

✦ Allows profile variation within simulation domain

Future Work


