10

Overview of the 2002 DIII–D Experimental Campaign

S. L. Allen and the DIII-D Team

Presented at the American Physical Society Division of Plasma Physics Meeting

DIII–D National Program is a Multi-Institution Collaborative Effort

Flexibility

NATIONAL FUSION FACILITY

Flexibile shape capability with 18 independent poloidal coils

Large Diagnostic Set

Control

Internal profile control with high power microwave

International Research Team Collaborations with 60 institutions – 300 users

NATIONAL LABS	UNIVERSITIES	INTERNATIONAL LABS
ANL	Alaska	ASIPP (China)
INEL	Alberta (Canada)	Cadarache (France)
LANL	Cal Tech	CCFM (Canada)
LLNL	Chalmers U. (Sweden)	Culham (England)
ORNL	Columbia U.	FOM (Netherlands)
PNL	Georgia Tech	Frascati (Italy)
PPPL	Hampton U.	loffe (Russia)
SNLL	Helsinki U. (Finland)	IPP (Germany)
	Johns Hopkins U.	JAERI (Japan)
	Lehigh	JET (EC)
INDUSTRY COLLARS	MIT	KAIST (Korea)
CompX	Moscow State U. (Russia)	KBSI (Korea)
CPI (Varian)	RPI	Keldysh Inst. (Russia)
GA	U. Maryland	KFA (Germany)
Gycom	U. Texas	Kurchatov (Russia)
Orincon	U. Toronto (Canada)	Lausanne (Switzerland)
Creare	U. Wales (Wales)	NIFS (Japan)
FARTech	U. Washington	Troitsk (Russia)
Gycom	U. Wisconsin	SWIP (China)
HiTech Metallurgical	UC Berkeley	Southwestern Inst. (China)
IR&T	UC Irvine	Tsukuba U. (Japan)
Surmet	UCLA	
Thermacore	UCSD	
TSI Research		

1. Advanced Tokamak: Steady-state high β, high τ_E, high bootstrap fraction plasma
• The MHD - stable operating space has been expanded with plasma control

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

External Kink Instability limits high- β operation Sustainment of plasma rotation stabilizes mode

• Rotation slowing is a consequence of "resonant error field amplification" at β above the no-wall limit [A. Boozer, Phys. Rev. Lett. <u>86</u> (2001)]

SAN DIEGO

Unstable (x10)

External Kink Instability limits high- β operation Sustainment of plasma rotation stabilizes mode

- Rotation slowing is a consequence of "resonant error field amplification" at β above the no-wall limit [A. Boozer, Phys. Rev. Lett. <u>86</u> (2001)]
- Reduction of the non-axisymmetric (error) fields enables operation above the no-wall limit

Unstable (x10)

Stable with Rotation

INTERNAL CONTROL COILS WILL BE AN EFFECTIVE TOOL FOR PURSUING BOTH ACTIVE AND PASSIVE STABILIZATION OF THE RWM

- Off-midplane coils allow better matching to poloidal spectrum of error field or RWM
- Feedback stabilization is calculated to open high beta wall-stabilized regime to plasma without rotation (may be important for burning plasma)

12-coil internal set available for experiments 2003

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

 $\rightarrow \beta_{N} \cong \beta_{N}$ (ideal wall) $\cong 2 \beta_{N}$ (no wall)

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD

-> Increase β by 60% in sawtoothing plasmas

Steerable ECCD has stabilized Neoclassical Tearing Modes

1 MW Class GYROTRON

<section-header><text><text><text><text>

Steerable ECCD has stabilized Neoclassical Tearing Modes

β_{N} RAISED 60% AFTER ECCD SUPPRESSION OF m/n = 3/2 NTM

Location of ECCD optimized in real time to minimize NTM amplitude

- Location held fixed when amplitude is zero
- Mode restrikes as q = 3/2 moves radially by 2 cm off ECCD location

β_{N} RAISED 60% AFTER ECCD SUPPRESSION OF m/n = 3/2 NTM

Location of ECCD optimized in real time to minimize NTM amplitude

- Location held fixed when amplitude is zero
- Mode restrikes as q = 3/2 moves radially by 2 cm off ECCD location

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

 $\longrightarrow \beta_{N} \cong \beta_{N} \text{ (ideal wall)} \cong 2 \beta_{N} \text{ (no wall)}$

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD

DEMONSTRATED COMPLETE SUPPRESSION OF THE m/n = 2/1 TEARING MODE BY RADIALLY LOCALIZED ECCD

 β_N is feedback controlled to temporarily rise to excite the mode Location of ECCD optimized (#111367) by toroidal field PCS "Search and Suppress"

SAN DIEGO

DEMONSTRATED COMPLETE SUPPRESSION OF THE m/n = 2/1 TEARING MODE BY RADIALLY LOCALIZED ECCD

 β_{N} is feedback controlled to temporarily rise to excite the mode Location of ECCD optimized (#111367) by toroidal field PCS "Search and Suppress"

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities

VALIDATED ECCD THEORY ALLOWS USE OF DETAILED COMPUTER MODELS TO DEVELOP EXPERIMENTS

• Excellent agreement of ECCD theory and experiment

258-02/KHB/wjj

VALIDATED ECCD THEORY ALLOWS USE OF DETAILED COMPUTER MODELS TO DEVELOP EXPERIMENTS

• Excellent agreement of ECCD theory and experiment

 Prediction of enhanced negative central shear in AT plasma with

258-02/KHB/wjj

VALIDATED ECCD THEORY ALLOWS USE OF DETAILED COMPUTER MODELS TO DEVELOP EXPERIMENTS

258-02/KHB/wjj

ECCD PRODUCES CURRENT PROFILE MODIFICATION IN ADVANCED TOKAMAK PLASMA

- β_N H₈₉ ≥ 7 for full 2.0 s ECCD pulse
- β_N at or slightly above β_N (no-wall)
- Total noninductive current fraction ≥90%
- q profile modified during high β, AT phase of shot

ECCD PRODUCES CURRENT PROFILE MODIFICATION IN ADVANCED TOKAMAK PLASMA

- β_N H₈₉ ≥ 7 for full 2.0 s ECCD pulse
- β_N at or slightly above β_N (no-wall)
- Total noninductive current fraction ≥90%
- q profile modified during high β, AT phase of shot

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues

We have expanded the operational regime of the Quiescent H–Mode to higher density

255-02/KB/JY

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{\text{e}}$ or ν^*

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{\text{e}}$ or ν^*
 - Balanced double null divertor results in small inner strike point heat loads

The Inboard Divertor Particle And Heat Fluxes Are Low In Symmetric Double-null Plasma

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{\text{e}}$ or ν^*
 - Balanced double null divertor results in small inner strike point heat loads
 - Demonstrated $q_{95} \sim 4$ operating scenario for ITER

STATIONARY PLASMAS WITH $\beta_N H/q_{95}^2 \simeq$ ITER DESIGN VALUE AND $q_{95} > 4$ HAVE BEEN DEMONSTRATED ON DIII-D

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{{\sf e}}$ or ν^*
 - Balanced double null divertor results in small inner strike point heat loads
 - Demonstrated $q_{95} \sim 4$ operating scenario for ITER
 - Disruption mitigation via a massive gas puff

Other DIII-D Presentations Remaining This Week

- **1. Poster Sessions:**
 - Thursday Morning, QP1
 - Thursday Afternoon, RP1

2. Invited Oral Talks

• Friday Morning: Whyte (Disruption Avoidance) Candy (Transport) McKee (Zonal Flows)

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{{\sf e}}$ or ν^*
 - Balanced double null divertor results in small inner strike point heat loads
 - Demonstrated $q_{95} \sim 4$ operating scenario for ITER
 - Disruption mitigation via a massive gas puff

- **1.** Advanced Tokamak: Steady-state high β , high τ_E , high bootstrap fraction plasma
 - The MHD stable operating space has been expanded with plasma control
 - Rotational stabilization of Resistive Wall Modes yielding

- Stabilization of (3,2) Neoclassical Tearing Mode with ECCD
 - —> Increase β by 60% in sawtoothing plasmas
- First stabilization of (2,1) NTM with ECCD
- First integrated AT discharges with current profile control by ECCD
 - Modeling of current evolution and predictions of capabilities
- 2. Key burning plasma issues ELMs, integrated operation, disruptions
 - QH-mode plasmas with ITB small ELMs, some impurity issues
 - Pedestal width is set by neutral physics, ELMs depend on ${\sf n}_{{\sf e}}$ or ν^*
 - Balanced double null divertor results in small inner strike point heat loads
 - Demonstrated $q_{95} \sim 4$ operating scenario for ITER
 - Disruption mitigation via a massive gas puff

QUIESCENT H-MODE RUNS ELM-FREE FOR LONG PULSES WITH CONSTANT DENSITY AND RADIATED POWER

SAN DIEGO

THE DIII-D RESEARCH PROGRAM WILL MAKE MAJOR CONTRIBUTIONS IN THREE FOCUS AREAS

- Advanced Tokamak: in-principle steady-state, high performance discharges
 - Scientific understanding of key elements
 - MHD stabilization
 - ★ Profile optimization
 - Plasma control
 - Integrated self-consistent scenarios
- Transport: major advance in turbulent transport understanding
 - Develop state-of-the-art simulations and models
 - Measure turbulence generated flows
 - Measure short wavelength turbulence (electron transport)
- Mass transport in the boundary
 - Integrated modeling of the boundary
 - Measure flow of primary ions
 - Measure erosion and redeposition (tritium retention issue)

DIII–D progress over a broad range of science issues will support these accomplishments

