Overview of the 2002 DIII-D Experimental Program

S.L. ALLEN, LLNL, DIII-D TEAM, General Atomics — The DIII-D program is focused on developing the scientific basis for an Advanced (optimized) Tokamak. In the 2002 campaign, AT discharges with $\beta_N > 10$ for several τ_E have been obtained with 85% non-inductive current. Resistive wall mode stabilization has been demonstrated with rotation, error field reduction, and real-time feedback with external coils. Stabilization of m/n=3/2 neoclassical tearing modes (NTMs) with feedback-localized ECCD and a “search and suppress” algorithm has enabled 50% increases in β_T. Increased ECH power in this campaign has made possible the stabilization of the 2/1 NTM for the first time on DIII-D. We continue to increase both the performance ($\beta_N > 7$ for $10 \tau_E$) and the understanding of the quasi-stationary quiescent double barrier mode which has both ion and electron internal transport barriers and no ELMs. Edge pedestal scalings are being developed and we developed a simplified model of the ELM as a combination of edge current-(peeling) and pressure-(ballooning) driven instabilities. “Bursty” edge transport is responsible for half of the radial transport in L-mode; a similar mechanism with reduced amplitude is seen in H-mode.

1Supported by US DOE Contracts DE-AC03-99ER54463 (GA) and W-7405-ENG-48 (LLNL).