High Bootstrap Fraction, High Performance Plasmas on DIII-D

by M. R. Wade*

for T.C. Luce,[†] J.R. Ferron,[†] P.A. Politzer,[†] W.P. West,[†] A.M. Garofalo,[‡] J.A. Jayakumar,[§] M. Okabayashi,[¶] J.G. Watkins,[△] and the DIII–D Research Staff

> *Oak Ridge National Laboratory. [†]General Atomics. [‡]Lawrence Livermore National Laboratory. [§]Colaumbia University. [¶]Princeton Plasma Physics Laboratory. [△]Sandia National Laboratories.

Presented at the American Physical Society Division of Plasma Physics Meeting Long Beach, California

October 29 through November 2, 2001

MOTIVATION

- High bootstrap fraction, high performance plasmas offer an alternative to pulsed scenarios based on conventional tokamak physics
 - High $f_{BS} = I_{BS}/I_p$ leading to reduced recirculating power
 - Comparable $\beta \tau$ due to improved stability and confinement limits

MAJOR ELEMENTS HAVE BEEN DEMONSTRATED — FOCUS NOW IS ON INTEGRATION OF ELEMENTS

- The major elements required in achieving integrated, long-pulse, advanced tokamak operation have been demonstrated
 - $\begin{array}{ll} \beta = 4.2\% & f_{BS} = 65\% \\ \beta_p = 2 & f_{NI} = 80\% \\ \beta_N H_{89} \geq 10 \text{ for } 600 \text{ ms } (\sim\!\!4\ \tau_E) \end{array}$
 - Density control (n_e < 5×10¹⁹ m⁻³) at β_N ~ 4
 - ECCD efficiencies consistent with theory and future AT needs
- Several issues involving the integration of these elements remain. Of particular importance are:
 - Obtaining adequate β_e for ECCD at high β
 - Avoiding NTM at high β

$\begin{array}{l} \mbox{CONDITIONS CONDUCIVE TO HIGH } f_{BS} \mbox{ AND HIGH } \beta\tau \mbox{ ACHIEVED} \\ (\beta_N\approx 4, \mbox{ H}_{89}\approx 3, \mbox{ } \beta_p\approx 2) \end{array}$

$\begin{array}{l} \mbox{ACHIEVED β IS WELL ABOVE CALCULATED} \\ \mbox{NO-WALL $n=1$ IDEAL LIMIT} \end{array}$

• 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅

(Ferron RP1.013)

250-01/MRW/WJ

• 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅

(Ferron RP1.013)

250-01/MRW/WJ

- 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅
- 2001 studies indicate primary variation is with q₉₅

(Ferron RP1.013)

- 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅
- 2001 studies indicate primary variation is with q₉₅

 Discrepancy between experimental and theoretical trends suggests more physics involved than simply no-wall, n=1 stability

(Ferron RP1.013)

250-01/MRW/WJ

2/1 TEARING MODE DESTABILIZED AS $q_{min} \to 1.5$ THEORY INDICATES CLASSICAL DESTABILIZATION AS $\Delta' > 0$

• Tearing modes generally occur with $\beta_N > \beta_N^{nowall}$ and with q_{min} 1.5 – 1.8

2/1 TEARING MODE DESTABILIZED AS $q_{min} \to 1.5$ THEORY INDICATES CLASSICAL DESTABILIZATION AS $\Delta' > 0$

• Tearing modes generally occur with $\beta_N > \beta_N^{nowall}$ and with q_{min} 1.5 – 1.8

2/1 TEARING MODE DESTABILIZED AS $q_{min} \to 1.5$ Theory indicates classical destabilization as $\Delta' > 0$

• Tearing modes generally occur with $\beta_N > \beta_N^{nowall}$ and with q_{min} 1.5 – 1.8

LARGE FRACTION OF CURRENT (f_{BS} ~ 65% AND f_{NI} ~ 80%) IS DRIVEN NON-INDUCTIVELY - REMAINING OHMIC CURRENT PEAKED OFF-AXIS

 Ohmic current at this time has penetrated to core. Replacing Ohmic Current at mid-radius with localized ECCD earlier in evolution should help maintain favorable q profile

MEASURED ECCD EFFICIENCY IS CONSISTENT WITH THAT REQUIRED FOR AT TARGET SCENARIO AND IS CONSISTENT WITH FOKKER-PLANCK PREDICTIONS

• Dimensionless current drive efficiency defined as:

 ζ (*N*_{II}, θ_{pol} , ρ , β_{e} , ...) = $\frac{e^3}{\epsilon^2} - \frac{I_{\text{EC}} n_{\text{e}} R}{P_{\text{EC}} T_{\text{e}}}$

DENSITY CONTROL ($n_e < 5.0 \times 10^{19}$) HAS BEEN ACHIEVED SIMULTANEOUSLY WITH $\beta_N \sim 4$

• Data and simulation shows $\zeta (\beta_e) \propto \beta_e^{1/2} \Rightarrow \eta = \frac{I_{EC}}{P_{EC}} \propto \frac{\beta_e^{3/2}}{n_e^2 R}$

250-01/MRW/wj

EFFORTS AT OPTIMIZING NON-INDUCTIVE CURRENT DRIVE COMPLICATED BY $\beta_{\textbf{e}}$ DEPENDENCE ON DENSITY

To maximize non-inductive current drive, want to simultaneously optimize f_{BS} and η_{ECCD}

250-01/MRW/wj

SUMMARY

- Accomplished

 - $\begin{array}{l} & \beta_N \, {}^{}_{\text{H}_{89}} > 10, \, f_{\text{BS}} = 65\% \text{ sustained for 4 } \tau_{\text{E}} \\ & \text{Density control (n}_{\text{e}} < 5 \times 10^{19} \, \text{m}^{-3}) \text{ achieved simultaneous with } \beta_N \sim 4 \end{array}$
 - ECCD efficiencies found to be consistent with theory and future AT needs
- Key issues for 2002
 - Avoidance of 2/1 NTM onset via q profile control
 - Increasing T_e via density control and scenarios with T_e ~ T_i

SUMMARY

- Accomplished

 - β_N H₈₉ > 10, f_{BS} = 65% sustained for 4 τ_E
 Density control (n_e < 5×10¹⁹ m⁻³) achieved simultaneous with β_N ~ 4
 - ECCD efficiencies found to be consistent with theory and future AT needs
- Key issues for 2002
 - Avoidance of 2/1 NTM onset via q profile control
 - Increasing T_e via density control and scenarios with T_e ~ T_i
- Current drive
 - f_{BS} ~ 65%, f_{NI} ~ 80% achieved
 - Current drive capability (I_{EC}/P_{EC}) limited by attainable T_e at current drive location
 - Modeling indicates q profile can be sustained for >> 10 s with 35 mw ECCD (Muratam: F01.003)
- Stability
 - β limit well above no-wall, ideal limit approaching ideal DIII–D wall β limit
 - Experimental β limit does not scale with theoretical n = 1, no wall β limit
 - High β duration limited by classically destabilized tearing mode (Brennan F01.007)
- Confinement
 - GLF23 modeling indicates E×B shear limits turbulent transport but does not completely suppress turbulence (Kinsey Q01.012)

