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q = 3.1, βN = 2.7, H89 = 1.9 

q = 5.5, βN = 3.8, H89 = 2.7 

● High bootstrap fraction, high performance plasmas offer an alternative to pulsed 
 scenarios based on conventional tokamak physics

— High fBS = IBS/Ip leading to reduced recirculating power
— Comparable βτ due to improved stability and confinement limits



MAJOR ELEMENTS HAVE BEEN DEMONSTRATED — 
FOCUS NOW IS ON INTEGRATION OF ELEMENTS 

250–01/MRW/wj

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

● The major elements required in achieving integrated, long-pulse, 
 advanced tokamak operation have been demonstrated

β = 4.2%     fBS = 65% 
βp = 2     fNI = 80% 
βNH89 ≥ 10 for 600 ms (~4 τE) 

— Density control (ne < 5×1019 m–3) at βN ~ 4
— ECCD efficiencies consistent with theory and future AT needs

● Several issues involving the integration of these elements remain. 
 Of particular importance are:

— Obtaining adequate βe for ECCD at high β

— Avoiding NTM at high β
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ACHIEVED β IS WELL ABOVE CALCULATED 
NO–WALL n = 1 IDEAL LIMIT
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n = 1, No Walln = 1, Ideal DIII–D Wall
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● 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

EXPERIMENTAL STUDIES INDICATE βN INCREASES WITH q95; 
DEPENDENCE NOT EXPLAINED BY NO-WALL, n = 1 β LIMIT
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● 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

EXPERIMENTAL STUDIES INDICATE βN INCREASES WITH q95; 
DEPENDENCE NOT EXPLAINED BY NO-WALL, n = 1 β LIMIT
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● 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

EXPERIMENTAL STUDIES INDICATE βN INCREASES WITH q95; 
DEPENDENCE NOT EXPLAINED BY NO-WALL, n = 1 β LIMIT
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● Discrepancy between experimental and theoretical trends suggests more physics 
 involved than simply no–wall, n=1 stability

● 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

EXPERIMENTAL STUDIES INDICATE βN INCREASES WITH q95; 
DEPENDENCE NOT EXPLAINED BY NO-WALL, n = 1 β LIMIT
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4.75 < S < 5.25 Stability 
calculations

● 2001 studies indicate primary variation is with q95

Fixed I/aB Fixed Shape
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● Tearing modes generally occur with βN > βN          and with qmin 1.5 – 1.8

2/1 TEARING MODE DESTABILIZED AS qmin → 1.5
THEORY INDICATES CLASSICAL DESTABILIZATION AS ∆′ > 0
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● Tearing modes generally occur with βN > βN          and with qmin 1.5 – 1.8
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● Ohmic current at this time has penetrated to core. Replacing Ohmic Current at mid-radius 
 with localized ECCD earlier in evolution should help maintain favorable q profile

LARGE FRACTION OF CURRENT (fBS ~ 65% AND fNI ~ 80%) IS DRIVEN 
NON-INDUCTIVELY - REMAINING OHMIC CURRENT PEAKED OFF-AXIS
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MEASURED ECCD EFFICIENCY IS CONSISTENT 
WITH THAT REQUIRED FOR AT TARGET SCENARIO 

AND IS CONSISTENT WITH FOKKER-PLANCK PREDICTIONS
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● Dimensionless current drive efficiency defined as:
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DENSITY CONTROL (ne < 5.0×1019) 
HAS BEEN ACHIEVED SIMULTANEOUSLY WITH βN ~ 4
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EFFORTS AT OPTIMIZING NON-INDUCTIVE CURRENT DRIVE 
COMPLICATED BY βe DEPENDENCE ON DENSITY
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SUMMARY
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● Accomplished

— ECCD efficiencies found to be consistent with theory and future AT needs

— βN H89 > 10, fBS = 65% sustained for 4 τE
— Density control (ne < 5×1019 m–3) achieved simultaneous with βN ~ 4 

● Key issues for 2002
— Avoidance of 2/1 NTM onset via q profile control 
— Increasing Te via density control and scenarios with Te ~ Ti
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● Accomplished

— Current drive capability (IEC/PEC) limited by attainable Te at current drive location
— Modeling indicates q profile can be sustained for >> 10 s with 35 mw 
 ECCD (Muratam: F01.003)

● Current drive
— fBS ~ 65%, fNI ~ 80% achieved

— ECCD efficiencies found to be consistent with theory and future AT needs

— βN H89 > 10, fBS = 65% sustained for 4 τE

● Stability
— β limit well above no-wall, ideal limit approaching ideal DIII–D wall β limit
— Experimental β limit does not scale with theoretical n = 1, no wall β limit
— High β duration limited by classically destabilized tearing mode (Brennan F01.007) 

● Confinement
— GLF23 modeling indicates E×B shear limits turbulent transport but does not 
 completely suppress turbulence  (Kinsey Q01.012)

— Density control (ne < 5×1019 m–3) achieved simultaneous with βN ~ 4 

● Key issues for 2002
— Avoidance of 2/1 NTM onset via q profile control 
— Increasing Te via density control and scenarios with Te ~ Ti


