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Progress in MHD Stability and Current Drive Towards
Steady-State High Performance1 T.S. TAYLOR, DIII-D TEAM,
General Atomics — The DIII-D steady-state high performance scenario
requires an elevated axial q with weak or negative central shear, which is
favorable to local stability, high bootstrap fraction, and reduced trans-
port. Two key research elements of this scenario are MHD stability at
high β and off-axis current drive. Good progress has been made on sta-
bilization of resistive wall modes (RWM) and neoclassical tearing modes
(NTM), the main obstacles to sustaining high β. Identification of the
error field amplification of a marginally stable RWM as the mechanism
for the loss of rotation in high β plasmas has led to stabilization of the
RWM by plasma rotation and an increase in βN to approximately twice
the free-boundary limit. In separate discharges, NTMs have been sta-
bilized by feedback-localized electron cyclotron current drive (ECCD),
and β was increased 20% above the NTM onset value. The efficiency
of off-axis ECCD, which at low β suffers a reduction due to trapping
effects, was found to increase with increasing βe and recover near axial
values at βe = 2%, as predicted by theory. Scenario modeling indicates
the planned 3.5 MW of ECCD plus existing neutral beam heating can
sustain these high bootstrap fraction, high performance scenarios.

1Work supported by the US DOE under Contract DE-AC03-99ER54463.
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SUMMARY/OUTLINE

● High normalized beta βN = βT/(I/aB) is required for steady-state
high performance

● Stabilization of resistive wall mode by plasma rotation allows
reproducible stable operation above βnowall, up to ~ βideal wall

● Neoclassical tearing modes are stabilized by active feedback control
of the deposition location of electron cyclotron current drive (ECCD)

● Modeling shows that 3.5 MW of off-axis electron cyclotron current
drive (ECCD) can maintain favorable q-profile for advanced tokamak 
studies and avoidance of tearing modes
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FOCUS OF DIII–D RESEARCH IS ON ADVANCED TOKAMAK PHYSICS

● Innovative concept improvement of the tokamak concept toward
— High power density

3333 Improved stability, βT↑ , βN↑
— Compact (smaller)

3333 Improved confinement, τ↑ , H↑
— Steady state

3333 High bootstrap fraction ⇒  high βN
3333 Current drive and divertor optimization

● A self-consistent optimization of plasma physics through
— Magnetic geometry (plasma shape and current profile)
— Plasma profiles (current, pressure, density, rotation, radiation)
— MHD feedback stabilization

} Simultaneously
integrated

— Discovering the Ultimate Potential of the Tokamak —
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● Broad or hollow current profile and broad
pressure profile

ULTIMATE POTENTIAL OF THE TOKAMAK
VISION:  HIGH BOOTSTRAP FRACTION NCS SCENARIO

266–01/TST/wj

— qmin > 1 → stability to central modes (ST, NTM, . . .)

— q0, qmin > 1 → high bootstrap fraction, fBS  
— Low magnetic shear allows high core pressure

gradients (ITBs) — second stable access

— ITB gives good confinement
— Strong coupling of external modes to wall →

stabilization of resistive wall mode
— Well-aligned bootstrap current, edge current (H–mode)

● Promise of exciting new physics in NCS regime, high q0, qmin
— Key is to maintain profile to investigate physics

— High fBS (βN, βp) needed for high q0, qmin
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● Building blocks for high performance plasmas represent important and rich
scientific challenges
— Density and impurity control
— Current profile evolution and control
— Resistive wall mode stabilization

— Neoclassical tearing mode stabilization
— Transport barrier control
— Pedestal optimization and control

✔
✔

✔
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STEADY STATE HIGH PERFORMANCE
REQUIRES OPERATION AT HIGH βN

βN = 3.5

Large Bootstrap Fraction (Steady State)
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HIGH βN OPERATION REQUIRES PLASMA SHAPING,
BROAD PRESSURE PROFILES, AND WALL STABILIZATION
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● βN ≡ βT/(I/aB)

Ideal Stability, n = 1, GATO
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● βN limited by resistive wall modes
— RWM stabilization

● q0 < 1.5, βN limited by neoclassical
tearing modes
— NTM stabilization

● Duration limited by current
profile evolution
— Profile control
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DIII–D

40

ARIES-AT
ITER-AT

SSTR

NTM 
Stabilization

DIII–D Data

DIII–D 
AT Target

RWM
Stabilization

Profile 
Control

ITER FEAT

302010
τdur/τE

β N
 H

89

0
0

5

10

15

20

PROGRESS IN STEADY HIGH PERFORMANCE RELIES ON
AVOIDANCE AND CONTROL OF MHD INSTABILITIES
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STABILIZATION OF THE RESISTIVE WALL MODE

Plasma pressure is stably maintained above
the conventional pressure limit; up to a factor
of two above the conventional limit

●

KEY RESULT

Resistive wall mode is stabilized by
plasma rotation

●

KEY PHYSICS

Identification of "error field amplification" as mechanism for loss of plasma rotation●

Reduction of non-axisymmetric error field → continued rotation → stable to
high pressure

●
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PREVIOUS EXPERIMENTS:  DURATION OF HIGH BETA PHASE
WITH βN > βno-wall IS LIMITED BY SLOWING OF PLASMA ROTATION

● Wall stabilization sustained with βN up to 1.4 × βN
● Plasma rotation slows as βN exceeds the no-wall limit

● Resistive wall mode grows when rotation drops below a critical value
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LOSS OF PLASMA ROTATION IS CAUSED BY AMPLIFICATON
OF NON-AXISYMMETRIC ERROR FIELD WHEN β EXCEEDS βno wall

● Plasma rotation sustained longer with
decreasing error field
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● Marginally stable RWM can be excited
to finite amplitude by resonant,
non-axisymmetric "error" field
[A.H. Boozer, Phys. Rev. Lett. (2001)]
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MARGINALLY STABLE PLASMA MODE IS SHOWN BY
RESONANT RESPONSE TO APPLIED n = 1 FIELD

● Toroidal phase shift agrees with phase shift predicted
for m=3 mode

● Vacuum response has no phase shift between arrays
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 βN ~ 2x βno wall IS OBTAINED WITH ACTIVE RWM FEEDBACK

● Optimized error field reduction found with high gain active feedback on RWM
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BRAKING EXPERIMENT AT DIFFERENT β VALUES GIVES
EXPERIMENTAL BENCHMARKING OF CALCULATED NO-WALL LIMIT
● Increase error field during discharge

● βN
 < βno wall

N

● Independent
confirmation
of βno wall

N

~
— RWM strongly

damped
— Rotation sustained
— Stable plasma

● βN
 > βno wall

N
— Large amplification

of applied error
field

— Rotation decreases
— Unstable RWM

— Agreement with
ideal stability
calculations (GATO)
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FUTURE DIRECTIONS FOR STABILIZATION OF THE RESISTIVE WALL MODE

264–01/TST/wj

● Active stabilization with non-axisymmetric coils is calculated to open this
high beta regime to plasmas with no rotation

Coils Being Installed in DIII–D

● Stabization of the resistive wall mode by plasma rotation demonstrates stable
operation at βN > βN

no wall is feasible and validates theoretical models
G

ro
w

th
 R

at
e 

(s
–1

)

Id
ea

l W
al

l L
im

it 

1

100

104

Ideal Kink

Resistive
Wall Mode

βN - βN
no wall

βideal wall
 - βN

no wall

1.00.80.60.40.20

12-coil set (internal)
with internal Bp sensors

No Feedback
Internal Bp sensors

VALEN Calculations

N



NATIONAL FUSION FACILITY
S A N D I E G O

DIII–D 266–01/TST/wj

NEOCLASSICAL TEARING MODE STABILIZATION

● m/n = 3/2 neoclassical tearing mode stabilized by active feedback control
of the location of electron cyclotron current drive (ECCD)

— ECCD replaces missing bootstrap current in the island

— Accurate positioning of EC deposition with respect to the
island is required; ~1 cm

— Rigid plasma shift (or small change in BT) under active
feedback control aligns the EC deposition with the
island location

KEY RESULTS

— β is increased after NTM stabilization, by approximately 60%



CO-ECCD RADIALLY LOCALIZED AT ISLAND CAN REPLACE THE
“MISSING” BOOTSTRAP CURRENT AND COMPLETELY STABILIZE

THE NEOCLASSICAL TEARING MODE
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● Execute ∆R “Blind Search” pattern when mode
(3/2 island) amplitude exceeds threshold

● Move plasma major radius (and island) “rigidly”
(∆Rstep = 1 cm)

● Detect alignment of ECCD current deposition
with island (“sweet spot”) by sufficient change
in mode amplitude over the specified
“dwell” time (100 ms)

● If mode decays at > threshold rate, continue
to dwell. If not, continue search (or “jitter” . . . )

∆RSURF = 2.3 cm

106654 4450
106654 4550

PLASMA CONTROL SYSTEM REAL-TIME FEEDBACK
NTM CONTROL VARIES MAJOR RADIUS IN

RESPONSE TO MODE AMPLITUDE

163-01/jy

2

 1.
5

 1.5

2

ECH
f=110.0 GHz
facet ang=11.0 deg
tilt ang=66.0 deg



1.680 1.685 1.690

MAJOR RADIUS (m)

n=
2 

M
IR

NO
V 

AM
PL

IT
UD

E 
(T

/s
)

1.695 1.700
0

10

20

30

40

50

PCS reset at 4500 ms

NTM
restrikes
on a
sawtooth
crash

PCS optimization
starting from ∆R ≈ –2 cm
#106654 No PCS

optimization
#106642

Search

Dwell

Search
Dwell

188-01/RJL/jy
S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

REAL-TIME CONTROL OF MAJOR RADIUS FOR ECCD SUPPRESSION
(m/n = 3/2 NTM, 3 GYROTRONS, 1.5 MW, 3000 TO 4800 ms)



OPTIMUM LOCATION OF ECCD IS FOUND
BY SWEEPING TOROIDAL FIELD

● Toroidal field was ramped down
to scan ECCD past the island

● Alignment within ±1 cm is required

● jECCD > jBS is satisfied (TORAY-GA)

188-01/RJL/jy
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βN IS INCREASED ~60% FOLLOWING
SUPPRESSION OF m/n = 3/2 NTM WITH ECCD
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CURRENT PROFILE CONTROL:  MAINTAIN qmin > 1.5
TO AVOID NTM AND EXTEND HIGH PERFORMANCE DURATION

● High performance discharges near DIII–D AT target obtained

— Duration limited by growth of m/n = 2/1 tearing mode
— Experimental observable:  mode grows as qmin approaches 1.5

● m/n = 2/1 island appears when ∆′ approaches a pole, near ideal stability limit

● ECCD current drive will be used to maintain q-profile

— ECCD physics model validated; normalized CD efficiency increases with βe
— Modeling indicates 3.5 MW ECCD can keep qmin > 1.5 and extend duration

of AT discharge
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HIGH PERFORMANCE (βNH > 10), HIGH BOOTSTRAP
FRACTION (fBS > 60%) SUSTAINED FOR ~10 τE

Duration limited by growth
of m/n = 2/1 NTM

●

m/n = 2/1 growth experimentally
correlated with qmin ~ 1.5

●

ECCD will be used to sustain
favorable current profile
(qmin > 1.5)

●
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ELECTRON CYCLOTRON CURRENT DRIVE PROVIDES
LOCALIZED CURRENT WITH GOOD CONTROL

— For 2 gyrotrons in 2001

● Four 1 MW class gyrotrons
available for 2001

266–01/TST/wj
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PPPL Launcher

CPI Diamond Window Gyrotron

— Excellent Tool for Profile Control —

Second Harmonic 
Resonance

Steerable
Antenna

r/a = 0.12

r/a = 0.34

● Six gyrotrons planned
for 2002

● Radial deposition is
controlled by poloidal
launch angle and resonance
location (BT)

● Independent control of
toroidal and poloidal
launch angle facilitates
science (independent
n|| and ρ scans)

— For 4 gyrotrons in 2002
— Two gyrotrons fixed toroidal, variable poloidal

(2001 and 2002)



OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY
INCREASES IN HIGH β PLASMAS

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY 266–01/TST/wj

0.0
0.0

0.1

0.2

0.3

〈β〉 = 2.5%

〈β〉 = 0.4%

0.4

0.2

No
rm

al
iz

ed
 E

CC
D 

Ef
fic

ie
nc

y 
ζ

ρ
0.4 0.6

〈β〉 = 3.7%

Fokker-Planck with E||
(CQL3D)

Future AT

ζ = e3

ε2
0

IEC ne R
PEC Te

● Good agreement
between measured
efficiency and
theory

● Measured efficiency
consistent with
AT target scenario
requirements



266–01/TST/wj
S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

MODELING PREDICTS DISTRIBUTED 3.5-MW ECCD
CAN SUSTAIN βN =4, H89P=3.1 WITH fBS= 65% FOR MORE THAN 10 s
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SUMMARY/OUTLINE

● High normalized beta βN = βT/(I/aB) is required for steady-state
high performance

● Stabilization of resistive wall mode by plasma rotation allows
reproducible stable operation above βnowall, up to ~ βideal wall

● Neoclassical tearing modes are stabilized by active feedback control
of the deposition location of electron cyclotron current drive (ECCD)

● Modeling shows that 3.5 MW of off-axis electron cyclotron current
drive (ECCD) can maintain favorable q-profile for advanced tokamak 
studies and avoidance of tearing modes



NATIONAL FUSION FACILITY
S A N D I E G O

DIII–D 266–01/TST/wj

SAME PHYSICS OF ERROR FIELD-RWM INTERACTION
OBSERVED FOR PLASMAS WITH βno wall ~4 li OR ~2.4 li

● Error field
amplification at
βN > 4 li enhances
efficiency of
magnetic braking
of plasma rotation,
leading quickly to
RWM-induced
beta collapse
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AT HIGH PRESSSURE (β), THE PLASMA BECOMES UNSTABLE
TO A GLOBAL KINK MODE DEFORMING THE PLASMA SURFACE

Stable plasma with axisymmetric surface●

— Plasma rotation in the presence of a
conducting wall

Unstable plasma with helical surface
deformation

●

— Deformation is exaggerated about
10 times



NATIONAL FUSION FACILITY
S A N D I E G O

DIII–D 266–01/TST/wj

APPROACH TO AN IDEAL STABILITY BOUNDARY (POLE IN ∆′) MAY BE
AN ONSET MECHANISM FOR NEOCLASSICAL TEARING MODES

● No seed island evident
● ∆′ becomes large prior to onset on m/n = 2/1 mode
● Large standard deviation of ψ2µ∆′ indicates poles
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