DEPENDENCE OF TURBULENCE AND TRANSPORT ON THE ELECTRON TO ION TEMPERATURE RATIO

GEORGE MCKEE

M. MURAKAMI¹, C. PETTY², D. BAKER², J. BOEDO³, R. FONCK, D. RUDAKOV³, M. WADE¹, L. ZENG⁴

> University of Wisconsin-Madison ¹ Oak Ridge National Laboratory ² General Atomics ³ Univ. California-San Diego ⁴ Univ. California-Los Angeles

American Physical Society-Division of Plasma Physics October 31, 2001 - Long Beach, California, USA

MOTIVATION & OVERVIEW

- T_e/T_l is a critical dimensionless parameter for confinement and transport
- Present large beam-heated plasmas typically have $T_I > T_e$
- Next-step, burning plasma, or reactor scale devices will operate with $T_e/T_l \approx 1$
 - Higher density, better confinement \Rightarrow higher collisionality, thermalization
 - Direct alpha heating of electrons, limited beam heating
- Previous experimental work in H-mode (Petty, et al.): $\tau_E \sim (T_e/T_I)^{-2}$
- Theoretical predictions that transport increases as $T_e/T_1 \Rightarrow 1$
 - Simulations suggest $\chi_{I} \sim (T_{e}/T_{I}) + (0.8-1.1)$ (Kotschenreuther, Dorland)
- Critical gradient for ITG modes, R/L_{TI} , is reduced as T_e/T_I is increased

Goal: Understand fundamental physics of the dependence of turbulence & transport on T_e/T_l

OUTLINE

- Experimental conditions
- Profile Measurements
- Turbulence analysis
- Transport (TRANSP) analysis
- Conclusion

EXPERIMENTAL INVESTIGATION OF TURBULENCE AND TRANSPORT DEPENDENCE ON T_e/T_l

- B_T = -2.0 T, I_P = 1.0 MA
- Inner Wall Limited
- L-mode plasma
- a=0.63 m.
- κ=1.54
- P_{Beam} = 4.8 MW
- PECH = 2.4 MW (4 gyrotrons)

GOAL: Scan T_e while other parameters (T_I, Ω, n_e) held nearly constant --> Measure turbulence and transport characteristics

107574 1540.00 American Physical Society (DPP), Long Beach, CA, October, 2001--George McKee Li o construction de la construcción de la construc

EXPERIMENTAL INVESTIGATION: Te/TI VARIED USING ECH

- B_T = -2.0 T, I_P = 1.0 MA
- Inner-wall limited L-mode
- a = 0.63 m, κ = 1.54
- P_{BEAM} = 4.8 MW
- P_{ECH} = 2.4 MW

- T_e increased by 20%
- T_I and V_{tor} reduced in response to increasing T_e
- Density (not shown) essentially unchanged

Physics

Te/TI VARIED USING ECH

American Physical Society (DPP), Long Beach, CA, October, 2001--George McKee

Department of Engineering

Physics

Te Uniformly Increased as other Profiles Held Similar

Electron Temperature Raised by 20%, Self-Similarly

- Rotation reduced modestly, potentially affecting ExB shearing rate
- Intrinsic impurity (carbon) increased about 60% with ECH

Physics

TURBULENCE AMPLITUDE INCREASES WITH Te/TI

American Physical Society (DPP), Long Beach, CA, October, 2001--George McKee

Physics

TURBULENCE CORRELATION LENGTHS AND DECORRELATION TIME EXHIBIT LITTLE DEPENDENCE ON T_e/T_I

 Radial and Poloidal (not shown) correlation lengths virtually unchanged as T_e is varied

• Decorrelation time (eddy turnover time) exhibits little change, except near edge; suggests a stronger "churning" near edge region

$$\mathsf{D}_{\mathsf{TURB}} = \frac{(\mathsf{L}_{\mathsf{C},\mathsf{r}})^2}{\tau_{\mathsf{C}}}$$

• Poloidal flow velocity (eddy v_{θ} is reduced for r/a < 0.9 with higher T_e, but increases near edge (higher radial electric field?)

Physics

ION, ELECTRON, AND PARTICLE DIFFUSIVITY INCREASE WITH Te/TI

- Ion thermal diffusivity increases somewhat uniformly across profile
- Electron thermal diffusivity increases dramatically at and outside of deposition region, decreases inside
- Particle (Helium) transport increases
- $\tau_E \approx (T_e/T_I)^{-1.5}$

Magnitude of χ_{I} and D_{He} increase is similar to that of turbulence (\tilde{n}/n) increase, while change in χ_{e} increase suggests different transport mechanism

Physics

TURBULENCE ALSO INCREASES WITH T_e/T_I WHEN T_I INCREASED AT CONSTANT T_e

American Physical Society (DPP), Long Beach, CA, October, 2001--George McKee

Physics

GROWTH RATES MODESTLY HIGHER WITH INCREASED T_e/T_I While Shear Rates Reduced in Core

- Carbon level increased ~60% when ECH applied which reduces calculated growth rates: competition between T_e/T_I and n_{IMP}
- Shear rates not significantly different over outer half-radius, where turbulence measurements obtained
- Can't make quantitative conclusions yet, given uncertainty

CONCLUSIONS

- Turbulence and transport properties studied as a function of T_e/T_l , with T_e increased by 20% relative to T_l as other parameters held roughly constant
- Long-wavelength turbulence increases as $T_e/T_I \Rightarrow 1$
 - ñ/n increases about 10-20% (0.45 < r/a < 0.9)
 - v_{θ} is reduced, except at edge (r/a~0.95)
 - $L_{c,r}$, $L_{c,\theta}$, τ_c exhibit little change
- Transport increases significantly as T_e is uniformed increased via ECH heating:
 - T_e increased; rotation and T_I decrease
 - χ_I increases in response to increasing T_e; χ_e increased outside ρ_{DEP}
 - $\tau_{\rm E} \approx (T_{\rm e}/T_{\rm I})^{-1.5}$
- Magnitude of turbulence increase consistent with ion and particle transport increase (~20%); electron transport increases substantially (*2.5), likely resulting from an separate or additional mechanism

