Sensitivity of EFITs to the Form of the MSE Fitting Function

### M.A. Makowski, S. Allen, R. Ellis, R. Geer, J. Jayakumar, J. Moller, B. Rice

#### Poster RP1-020





#### **Issues and Motivation**

- The form of the fitting function is found to have an effect on the measured pitch angles
- While relatively small (0.2° 0.4°), the differences can influence:
  - the location of the magnetic axis
  - the magnitude of  $E_r$
  - the boundary of the plasma





## MSE Layout on DIII-D



Fitting Functions Differ Slightly in Form

- Currently use the "tangent-slope" form  $\frac{S_m}{C_m} = G \tan[2(\sigma \cdot \gamma + \varphi)]$
- However, the "tangent-offset" form is better justified

$$\frac{S_m}{C_m} = G \tan[2(\gamma + \varphi)] + G_0$$

• In the limit that  $\sigma = 1$  and  $G_0 = 0$ , the two forms coincide





## $\sigma=1$ is the Only Justified Value

- In the tangent-slope model,  $\sigma$  was introduced only to improve the fit. There is no other rationale for it
- When scans spanning ±180° rather than ±24° are used to determine σ, it's value is always found to be unity.(This can also be seen as a periodicity constraint)
- Modeling of the optical train also predicts  $\sigma = 1$





#### The Dielectric Mirror on the Edge Array Appears to Induce a Phase Shift between the S- and P-plane polarization components





#### The Value of $\sigma$ Depends on the Scan Interval





#### Edge Array Poorly Fits Tangent-Slope Model







All Channels are Consistent with the Tangent-Offset Model

- Edge array fits tangent-offset model significantly better than the tangent-slope model
- For the tangential and radial arrays, the calibration data fits the tangent-slope model with  $\sigma = 1$ , as well as the tangent-offset model with  $G_0 \approx 0$ . The value of the phase is the same for both fits.





Phase Shift Exists between Sin/Cos Signals for Edge Array

• Fitting the raw data to

$$S_m = G_s \sin[2(\gamma + \varphi_s)] + G_{s0}$$
$$C_m = G_c \cos[2(\gamma + \varphi_c)] + G_{c0}$$

reveals  $\phi_s \neq \phi_c$  for the edge array

- However, for the tangential and radial arrays,  $\phi_s \approx \phi_c$
- Edge phase shift is suspected to be caused by the dielectric mirror in this optical train





#### Phase Shift is Fit Well by Tangent-Offset

• For 
$$G_{s0} \approx G_{c0} \ll 1$$
  

$$\frac{S_m}{C_m} = \frac{G_s \sin[2(\gamma + \varphi_s)]}{G_c \cos[2(\gamma + \varphi_c)]}$$

$$= \frac{G_s}{G_c} \tan[2(\gamma + \varphi_c)] \cos[2(\varphi_s - \varphi_s)] + \frac{G_s}{G_c} \sin[2(\varphi_s - \varphi_s)]$$
• This is the tangent-offset form with

$$G = \frac{G_s}{G_c} \cos[2(\varphi_s - \varphi_c)], \quad G_0 = G \tan[2(\varphi_s - \varphi_c)]$$

• This reduces to the tangent-slope form when  $\varphi_s = \varphi_c$  and  $\sigma = 1$ 





# Correction only Significant on Edge Array



- Tangent-offset and tangent-slope forms agree for tangential and radial arrays
- Forms differ for edge array by ±0.25°





## Quality of Fit Improves with Number of Samples

• Coefficients not completely independent leading to apparently large errors

| Scan | Range | Step | G      | ε(G)   | φ       | ε(φ)    | G <sub>0</sub> | $\epsilon(G_0)$ | $(\chi_{\rm red})^2$ |
|------|-------|------|--------|--------|---------|---------|----------------|-----------------|----------------------|
| 1    | 48°   | 2°   | -1.318 | ±1.111 | -21.03° | ±10.67° | 0.173          | ±0.469          | 0.019                |
| 2    | 360°  | 8°   | -1.316 | ±0.239 | -21.06° | ±2.25°  | 0.175          | ±0.259          | 0.164                |
| 3    | 360°  | 2°   | -1.317 | ±0.129 | -21.09° | ±1.34°  | 0.174          | ±0.149          | 0.126                |

- Error is reduced as the range and number of sample points is increased
- Fit coefficients do not change as error is reduced





### $\phi_s$ and $\phi_c$ Differ only on the Edge Array



Comparison of EFITs using Pitch Angles Computed with the Tangent-Slope Model (Curves in Black) and the Tangent-Offset Model (Curves in Magenta)





#### Ohmic, L-mode, Ip-ramp, No E<sub>r</sub>







Tue Oct 30 14:16:48 2001







# Typical Thrust 2 Shot with E<sub>r</sub>













## QDB/QH/EHO Shot with E<sub>r</sub>











Tue Oct 30 13:13:04 2001



# Thrust 7, Counter Injection, with E<sub>r</sub>













#### RWM Shot with E<sub>r</sub>













chi\*\*2 Rout(m) Zout(m) a(m)elong utri İtri indent V (m\*\*3) A (m\*\*2) W (MJ) betaT(%) betaP betaN In Li error(e-4) q1 q95 dsep(m) Rm(m) Zm(m) Rc(m) Zc(m) betaPd betaTd betaTd Ipmeas(MA) BT(0)(T) Ipfit(MA) Rmidin(m) Bmidduit(m) Rmidout(m) gapin(m) gapout(m) gaptop(m) gapbot(m) Zts(m) Rvsin(m) Zvsin(m) Zvsin(m) Rvsout(m) Zvsout(m) Rsep1(m) Zsep1(m) Zsep2(m) Zsep2(m) psib(Vs/R) elongm qm nev1(e19) nev2(e19) nev3(e19) ner0(e19) n/nc dRsep qmin rhoqmin













Tue Oct 30 12:33:16 2001



### Conclusions

- EFITs using the tangent-offset model consistently:
  - Demonstrate considerably lower  $\chi_{mse}$
  - Predict lower  $E_r$  (when present)
  - Demonstrate similar or lower  $\chi_{mag}$  and  $\chi_{psi}$
  - Predict small differences in the location of the
    - The magnetic axis (±1 cm)
    - The plasma boundary (±1 cm)

than those using the tangent-slope model





# Conclusions (Con't)

- Only the calibration coefficients for the edge array are modified
- Elimination of the systematic error introduced by the tangent-slope model is most evident in the reduction in  $E_r$



